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NOVEL RHEOLOGICAL MODELLING OF THERMOSETS AND UNIDIRECTIONAL 

MONOTROPIC FIBRE-REINFORCED THERMOSET MATRIX COMPOSITES 

A refined, fully analytical rheological modelling of thermosetting polymers and unidirectional monotropic fibre-

reinforced thermoset matrix (UFRT) composites is presented. New polymers and composites under normal conditions, fully 

relaxed from curing and post-curing stresses, are modelled. The theory includes quasi-static short-term/medium-term/long-

term reversible rheological processes. Thermosets are isotropic materials exhibiting linearly viscoelastic shear strains and 

linearly elastic bulk strains. Fibres are monotropic (transversely isotropic) and linearly elastic materials. A generic function 

well reproducing the viscoelastic characteristics of thermosets and UFRT composites is a Mittag-Leffler fractional exponential 

function in an integral form. Coupled/uncoupled standard/inverse constitutive equations of linear rheology are formulated for 

thermosets and UFRT composites. The equations are mutually analytically transformable. New rheological models (coded  

H-R/H) for thermosets and UFRT composites are described by the smallest possible number of material constants. The ther-

moset is described by two independent elastic constants and three independent viscoelastic constants. The homogenized UFRT 

composite is described by five independent elastic constants and four independent viscoelastic constants, whereby two visco-

elastic constants are common to the matrix and the composite. An improved homogenization theory of UFRT composites, 

based on analytical solutions of the selected tasks of the theory of linear elasticity, is formulated for monotropic fibres and 

positively validated experimentally. The viscoelastic constants of the thermoset are calculated analytically in an iterative loop 

using a long-term unidirectional tension creep experimental test. The viscoelastic constants of the UFRT composite are calcu-

lated analytically employing H-R/H shear/quasi-shear storage compliances and VECP (the viscoelastic-elastic correspondence 

principle) shear/quasi-shear storage compliances. The H-R/H rheological model was validated numerically for selected UFRT 

composites. The validation tests were performed on the enhanced reliability UFRT composites reported by Soden, Hinton, and 

Kaddour (Composites Science and Technology, 1998, 2002). 

Keywords: thermoset, monotropic fibre-reinforced thermoset matrix composite, elasticity, rheology, homogenization, fraction-
al exponential generic function, material modelling, identification, simulation, validation 

 

 

INTRODUCTION 

Laminates with thermosetting matrices reinforced 

with glass or carbon fibres are commonly used in auto-

motive, aerospace/space, civil or marine/naval struc-

tures. In the design of these structures, relatively low 

stress levels leading to linearly elastic reversible  

processes are allowed. The effects of the viscoelastic  

characteristics of polymer matrices, temperature and 

aging are taken into account by partial safety factors. 

Development of the rheological modelling of thermo-

setting resins and fibre-reinforced polymer matrix com-

posites is therefore expected by engineers. 

Each lamina in structural laminates is a unidirec-

tional long fibre-reinforced thermoset matrix (UFRT) 

composite. A thermosetting resin matrix, mostly the 

epoxy- or polyester type, after the curing and post-

curing processes have been completed, is a solid mate-

rial exhibiting substantial viscoelastic or viscoelastic-

plastic deformations depending on the stress level,  

temperature level and time, e.g. Ref. [1]. The viscoelas-

tic strains of thermosetting matrices can induce signifi-

cant stress redistributions or undesirable deformations 

of laminates over a short/medium/long lifetime. 

A study of the literature on the elastic-viscoelastic or 

elastic-viscoelastic-plastic response of new thermosets 

and UFRT composites, fully relaxed after manufactur-

ing processes, subjected to long-term mechani-

cal/thermal loads was presented in [2]. Therefore, in 

this study the literature review is presented in an 

abridged version but supplemented with more publica-

tions. 

The rheological models of thermosets can be re-

flected by mechanical systems composed of Hooke (H), 

Kelvin (K), Maxwell (M), Newton (N), Rabotnov (R), 

Schapery (S) and other elements, in serial, parallel or 

serial/parallel connections. The H, K, M, and N ele-

ments are defined classically. Element R is a parallel 

combination of element H and a damping element de-

scribed by a Mittag-Leffler fractional exponential  
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generic function in an integral form, formulated by 

Rabotnov [3]. Element S uses a fractional power  

generic function, as proposed by Schapery [4]. 

The H-S and modified H-S models were applied in 

[5-10]. Schapery’s single integral constitutive model 

was formulated and tested. Elastic-viscoelastic-visco-

plastic tensile creep tests on a polymer-matrix compos-

ite were conducted at three levels of temperature in 

[11]. The linear viscoelastic behaviour of selected 

polymers was discussed in [12], using the creep func-

tion as a sum of normal exponents. A concurrent mi-

cromechanical model for unidirectional fibre-reinforced 

polymer matrix (UFRP) composites was formulated in 

[13]. A transient compliance followed the Prony series 

exponential form. 

The long-term linear viscoelastic behaviour of fibre-

reinforced polymer matrix composites, with the fibre 

and matrix phases described by a four-parameter 

rheological law, was discussed in [14]. Prediction of  

the viscoelastic behaviour of UFRP composites was 

developed in [15]. The H-K viscoelastic model for the 

matrix was used. The creep rupture phenomenon of  

the unidirectional glass fibre-reinforced vinyl ester  

matrix composite rod subjected to a shear-traction load 

was investigated experimentally and numerically in 

[16]. A power law for the matrix creep function was  

assumed. 

A linear viscoelastic model for unidirectional glass 

fibre-reinforced polymer matrix composites was formu-

lated in [17]. The fibres were assumed to be elastic, and 

the matrix was described by the M-K viscoelastic model. 

The results from 42-month creep experiments in the fibre 

direction on a uniaxial E-glass fibre-reinforced epoxy 

matrix composite are presented in [18]. The viscoelastic 

models were taken from the literature, i.e. the Burgers, 

Findley, and Nutting models. 

A three-dimensional temperature-dependent visco-

elastic constitutive model for UFRP composites is  

developed in [19]. The integrity basis for the decompo-

sition is used to formulate the energy functional, which 

enables uncoupled constitutive laws to be defined.  

A generalized Maxwell model is applied for the com-

posite. Thermal strains and temperature effects on the 

viscoelastic behaviour are introduced by the time-

temperature superposition principle. 

The research presented in [5-19] can be summarized 

as follows: The viscoelastic and plastic behaviour of 

thermosets and UFRT composites was described by  

H-S, modified H-S, H-K, M-K, fractional M, generalized 

M, Leonov, Burgers, Findley, and Nutting rheological 

models. The viscoelastic modelling of UFRT composites 

is most often based directly on experimental creep or 

creep-recovery tests. A promising tool for modelling 

the viscoelasticity of thermosets is the time-temperature 

superposition principle. To date, the effect of ageing 

thermosets and UFRT composites on their long-term 

rheological behaviour has not been studied. 
In Poland, research on the rheology of thermosetting 

polymers and UFRT composites has been ongoing since 

1995 by Klasztorny et al. [20-28]. This research is  

a continuation of the research conducted by Prof.  

A.P. Wilczynski in the period 1965-1995. The H-R/H-R 

(shear/bulk approach) rheological models for thermo-

sets and UFRT composites were formulated in [20, 21]. 

A UFRT composite was described by 27 viscoelastic 

constants determined numerically using a weakly  

conditional algorithm. In addition, after publication, the 

input data on the bulk creep of the exemplary thermoset 

turned out to be wrong. The M-R-K rheological model 

for thermosets and thermoplastics, described by 14  

elastic/viscoelastic/viscous constants estimated numeri-

cally and tested on polyester, was developed in [22].  

The H-R-2K rheological model for thermosets, de-

scribed by 9 elastic/viscoelastic constants, was formu-

lated in [23-25]. For UFRT composites, this approach 

results in 18 elastic/viscoelastic constants estimated 

numerically. The H-R-2K/H (shear/bulk approach) 

rheological model for thermosets, described by 8 elas-

tic/viscoelastic constants, was formulated in [26, 27]. 

An analytical-numerical algorithm to simulate reversi-

ble rheological processes in thermosets was developed 

in [28]. 

The research presented in [20-28] can be summa-

rized as follows. The H-R/H-R rheological model for 

thermosets is inadequate as it is based on incorrect  

viscoelastic bulk deformations. The M-R-K, H-R-2K, 

H-R-2K/H rheological models for thermosets are de-

scribed by relatively large numbers of viscoelastic  

constants creating fuzzy sets. To date, only coupled 

standard constitutive equations of the rheology of 

UFRT composites have been formulated, which corre-

spond to the H-R/H-R and H-R-2K rheological models 

of thermosets. 

Further development of the analytical rheological 

modelling of thermosets and UFRT composites is pre-

sented by Klasztorny and Nycz in [2, 29]. New phe-

nomenological rheological models coded as H-R/H 

were formulated, based on a Mittag-Leffler fractional 

exponential generic function in an integral form, the 

homogenization theory for UFRT composites with iso-

tropic fibres and the viscoelastic-elastic correspondence 

principle (VECP). Compared to [2, 29], this study in-

cludes the following changes / extensions / corrections: 

− formulation of the refined rheological modelling of 

thermosetting polymers and unidirectional mono-

tropic fibre-reinforced thermoset matrix (UFRT) 

composites (H-R/H rheological models), 

− simplification of the H-R/H rheological model of  

a UFRT composite by omitting the negligibly small 

viscoelastic strains corresponding to quasi-shear 

compliance ���(�), which results in a reduced num-

ber of independent viscoelastic constants, 

− formulation of the improved homogenization theory 

for monotropic fibres, based on [30], with the com-

patibility condition in the third Lamé-type task put 

on the radial displacements, 

− experimental validation of the compatibility condi-

tion in the third Lamé-type task on the improved  
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reliability UFRT composites reported by Soden  

et al. [31, 32], 

− experimental validation of the improved homogeni-

zation theory for monotropic fibres on the improved 

reliability UFRT composites reported by Soden et 

al. [31, 32], 

− experimental identification of viscoelastic constants 

of the selected epoxy resin, corresponding to the  

H-R/H rheological model of a thermoset resin, 

− numerical validation of the H-R/H rheological 

model of a UFRT composite on the improved reli-

ability UFRT composites taken from [31, 32], 

− adoption of a more natural system of designations, 

− elimination of proof errors in the equations. 

In the following sections, the improved rheological 

modelling of thermosets, the improved homogenization 

theory for UFRT composites with monotropic fibres, 

the improved analytical rheological modelling of UFRT 

composites, and the improved formulation of comple-

mentary problems will be presented in abbreviated ver-

sions compared to [2, 29]. The supplementary formulae 

are presented in Appendix A. 

IMPROVED ELASTIC AND RHEOLOGICAL 
MODELLING OF THERMOSETS 

The considerations in this section are an abbreviated 

version of those presented in [2], adopting a more natu-

ral system of designations. The following assumptions, 

valid in fibre-reinforced plastic matrix (FRP) laminate 

shell structural design, are made for thermosets consti-

tuting FRP matrices: 

− A thermoset is an isotropic material exhibiting line-

arly viscoelastic shear strains and linearly elastic 

bulk strains. 

− A thermoset is a new (unaged) material, fully  

relaxed from the residual stresses induced by the 

manufacturing processes. 

− Quasi-static long-term isothermal rheological proc-

esses under normal conditions (temperature 20ºC, 

humidity 50%) are considered. 

− Appropriately low levels of stresses and strains  

secure the reversibility of the rheological processes. 

The stress and strain components in any Cartesian 

coordinate system ������ are denoted as follows: ��,��,�� – normal stresses, ���, ���, ��� – shear 

stresses, ��, ��, �� – normal strains, ���, ���, ��� – shear 
strains. A linearly elastic thermoset is considered, de-

scribed by two independent elastic constants, i.e.  �� – Young’s modulus, 	� – Poisson’s ratio. The shear 
and bulk modules of a thermoset are dependent elastic 

constants, i.e. 

 
� = �� 2�1 + 	��⁄ ,			�� = �� 3�1 − 2	��⁄  (1) 

Classic coupled standard constitutive equations of 

the linear elasticity of a thermoset may be written in the 

following matrix notation: 

 � = ��	�	,			� = ���	� (2) 

where: 

� = �������� ,			� = ����������� ,			� = �������� ,			� = �����������
�� = � ���� ���� �������� ����

symm. �����	,			
 (3) 

���� = 1 ��⁄ 	,			���� = −	� ��⁄ 	,				��� = 1 2
�⁄  

with ��� = ��� 2⁄ , �� = 23, 13, 12. Vectors �,�,�,� 
represent parts of the strain and stress tensors at point ���,��,���, i.e. normal strains, half shear strains, nor-

mal stresses, and shear stresses. Quantity �� is the elas-
tic compliance matrix, while quantity ��� is the elastic 
shear compliance for a thermoset. Equation (2)1 is cou-

pled, whereas Eqn. (2)2 is uncoupled. 

By inverting Eqns. (2), classic coupled inverse con-

stitutive equations of the linear elasticity of a thermoset 

are obtained, i.e. 

 � = ��	�	,			� = ���	� (4) 

where: 

�� = � ���� ���� �������� ����
symm. ��������� = ���1 − 	�� � �⁄ 		,			���� = ���1 + 	��	� �⁄� = 1 − 3	�� − 2	�� 	,			��� = 2
�

 (5) 

Quantity �� is the elastic stiffness matrix, while 

quantity ��� is the elastic shear stiffness for a thermoset. 

Equation (4)1 is coupled, whereas Eqn. (4)2 is uncou-

pled. 

Coupled Eqn. (2)1 can be transformed into uncou-

pled standard constitute equations of the linear elasticity 

of a thermoset, i.e. (e.g. [22]) 

 �� = ���	��	,				�	 = �	�	�	 (6) 

where: 

 �� = ��� − �	�� − �	�� − �	� ,				�� = ��� − �	�� − �	�� − �	� 
 �	 = ��� + �� + ��� 3⁄ 	, (7) �	 = ��� + �� + ��� 3⁄ 	,			�	� = 1 3��⁄  

Vectors ��,�,��,� are the deviatoric parts of the 
strain and stress tensors of a thermoset at point ���,��,���, accordingly. Quantities �	,�	 are axiators 
of the strain and stress tensors of a thermoset, respec-

tively. Coefficient �	� is the elastic bulk compliance. 

By inverting Eqns. (6), uncoupled inverse constitu-

tive equations of the linear elasticity of a thermoset are 

obtained, i.e. 
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 �� = ���	��	,				�	 = �	�	�	 (8) 

where �	� = 3�� is the elastic bulk stiffness. 
The following relationships are obtained from Eqns. 

(2)-(8): 
 �� = ���	��−  �+ �	�	 ,  

 

			�� = ���	��−  �+ �	�	 
� = diag	�1, 1, 1�	,				 =

�

�
�1 1 1

1 1 1

1 1 1

� (9) 

where: �,  – transformation matrices. 

Uncoupled standard constitutive equations of the 

linear rheology of a thermoset, corresponding to Eqns. 

(6), (2)2, have the following form: 

 ����� = �����⊗ �����	,				�	��� = �	�	�	���,���� = �����⊗ ���� (10) 

for time � ≥ 0, with 

����� = ��� !1 + " # $�%�	&%


�

'	,  

$��� =
1(�# exp )−

*�(�+ *	,�*�	&*



�

 (11) 

,�*� =
sin-.-* *�

1 + 2*� cos-. + *�� 	, 						0 < . < 1 

 

The following nomenclature is introduced: ,�*� – 
function defining a Mittag-Leffler fractional exponen-

tial function in an integral form, r – fraction defining  

a Mittag-Leffler fractional exponential function in an 

integral form, (� – retardation time, $��� – Mittag- 

-Leffler fractional exponential generic function in an 

integral form for shear stresses, ����� – elastic-visco-
elastic shear compliance, c – long-term creep coeffi-

cient, ⊗ – convolution product operator. 

A linear rheological model described by Eqns.  

(10)-(11) is denoted as H-R/H. Under the assumptions 

made, a thermoset is described by two independent 

elastic constants (��, 	�) and three independent visco-
elastic constants ((�, ., "). A mechanical representation 

of the H-R/H model consists of a Hooke elastic element 

and a Rabotnov viscoelastic element (connected in 

a series) for the strain deviator and a Hooke elastic ele-

ment for the strain axiator. For boundary value . = 1, the H-R/H fractional model transforms into the 

H-K/H standard model (see Appendix A). 

Consider the pure shear creep of a thermoset,  

induced by stresses  

 ����� = ���	/���,			0��� = ��	/��� (12) 

where: ���,�� – constant shear stresses, /��� – Heavis-
ide function. Equations (10)1, (10)3 result in ����� = ���	11 + "	2���3	���,			 4��� = ���	11 + "	2���3	�� (13) 

where: 

2��� = 5 $�%�	&%


�
= 1 − 5 exp 6−

�


��
7 ,�*�	&*


�
 (14) 

is the creep function. 

The Laplace transforms made on Eqns. (10)1, (10)3 

have the form: 

�8��9� = ���	11 + "	$:�9�3	�:��9�,	 		4:�9� = ���	11 + "	$:�9�3	�8�9� (15) 

where q – a complex variable, and 

�8��9� = # exp�−9�� �����	&�


�

	,	 
			�:��9� = # exp�−9�� �����	&�


�

 

4:�9� = # exp�−9��4���	&�


�

	,		 
	�8�9� = # exp�−9�� 0���	&�


�

 

$:�9� = # exp�−9��$���	&�


�

=
1

1 + �9(��� 

(16) 

For the harmonic stress programmes 

 ��∗��� = ��� exp�i;�� ,			0∗��� = 0� exp�i;�� (17) 

where: ���,�� – shear stress amplitudes. The elastic-

viscoelastic responses obtained from Eqns. (10)1, (10)3 

are (evidence included in [2]) 

��∗��� = ��� !1 + " # exp�−i;%�Φ�%�	&%


�

'��∗���
4∗��� = ��� !1 + " # exp�−i;%�Φ�%�	&%


�

' 0∗��� (18) 

where: i = √−1 is an imaginary unit, � �∗ denotes  
a complex quantity, and ; > 0 is a circular frequency. 
The steady-state harmonic responses are obtained by 

putting � → ∞ in Eqns. (18), i.e. 

 ��∗��� = ��∗�;�	��∗���,			4∗��� = ��∗�;�0∗��� (19) 

where: 

 ��∗��� = ���	�1 + �	�	�i��
 = ������ + i������� 
������ = ��� �1 + � 1 + ������ cos�
� 2⁄ �

1 + 2������ cos�
� 2⁄ � + �������� 
������� = −���� ������ sin�
� 2⁄ �

1 + 2������ cos�
� 2⁄ � + ������� 
(20) 
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with: ��∗�;� – complex shear compliance, ����;� – shear 
storage compliance, �����;� – shear loss compliance. 

Inverting Eqns. (15) yields (evidence included  

in [2]) �:��9� = ���11 − &	=:�9�3�8��9�,			 4�9� = ���11 − &	=:�9�3	�8�9� (21) 

where: 

 & =
�

���
	,				=:�9� =

�

�������
�
,				(�� =

�

���
(�� 	 (22) 

with: (� – relaxation time, =��� – Mittag-Leffler frac-

tional exponential generic function in an integral form 

for shear strains, =:�9� – Laplace transform on =���, & – long-term relaxation coefficient. Relaxation con-

stants &,(� are expressed in terms of independent creep 

constants ",(�. In practice, constant (� is calculated 
from the equivalent formula 

 (� = (� exp 6�
�

ln
�

���
7 (23) 

By applying the inverse Laplace transform on Eqns. 

(21) and taking into account Eqn. (10)2, uncoupled in-

verse constitutive equations of the linear rheology of  

a thermoset are obtained, i.e. 

����� = �����⊗ �����	,				�	��� = �	�	�	���, 		���� = �����⊗ ���� (24) 
where: 

����� = ��� !1 − &# =�%�	&%


�

'	 , 
 			=��� =

�

��
5 exp 6−

�


��
7 *	,�*�	&*


�
	 (25) 

with ����� – elastic-viscoelastic shear stiffness. Generic 
functions $���,=��� have analogous properties, as 
specified for $��� in Appendix A. 

Consider the pure shear relaxation of a thermoset 

induced by strains 

 ����� = ���	/���,			4��� = 4�	/��� (26) 

where: ���,4� – constant shear strains. Equations (24)1, 
(24)3 result in ����� = ���	11 − &	>���3	���, 

 		���� = ���	11 − &	>���3	4� 
(27) 

where the relaxation function is expressed as 

>��� = # =�%�	&%


�

 

= 1 −# exp )−
*�(�+ ,�*�	&*




�

 

(28) 

Coupled standard/inverse constitutive equations of 

the linear rheology of a thermoset result from Eqns. 

(2, 4, 6, 8-10, 24) and have the following final form: 

 
���� = ����⊗ ����	,				���� = �����⊗ �������� = ����⊗ ����	,				���� = �����⊗ ���� (29) 

where: ���� = �����	��−  �+ �	�	 	, 
 			���� = �����	��−  �+ �	�	  

(30) 

are the elastic-viscoelastic compliance and stiffness ma-

trices for a thermoset. Based on Eqns. (11)1, (25)1, 

Eqns. (29) can be rewritten in the following explicit 

form: 

a) standard equations: 

���� = ��	���� + ���		 
 ����	
��

�

�� − �� ⊗ ����
���� = ���	���� + ���		 
 ����	
��

�

⊗ ����
 (31) 

b) inverse equations: 

���� = ��	���� − ���	
 
 ����	
��

�

�� − �� ⊗ ����
���� = ���	���� − ���	
 
 ����	
��

�

⊗ ����
 (32) 

IMPROVED HOMOGENIZATION THEORY  
OF UFRP COMPOSITE 

This Section formulates an improved quasi-exact 

homogenization theory of a UFRP composite. The  

theory is based on [30]. Compared to this reference, the 

following changes / extensions / corrections were made: 

− assumption that the reciprocal Maxwell relations 

are compatible with CAE systems (MSC.Marc,  

LS-Dyna etc.), 

− adoption of the compatibility condition in the third 

Lamé-type task imposed on the radial displace-

ments of the representative volume cell (RVC), 

− experimental validation of the compatibility condi-

tion in the third Lamé-type task on improved reli-

ability UFRT composites taken from [31], 

− adoption of a more natural system of designations, 

− elimination of proof errors in the equations. 

The complete analytical homogenization theory  

regarding RVC is presented in [30]; hence, in this study 

a shortened version of an improved theory will be pre-

sented.  

The following assumptions are made in reference to 

the UFRP homogenization theory: 

− A UFRP composite consists of two components, 

the matrix and the fibre. 

− The matrix is a linearly elastic isotropic solid body. 

− The fibre is a linearly elastic monotropic solid body 

with the direction of monotropy coinciding with the 

fibre direction. 

− The fibres have an identical circular cross-section. 

− The fibres are perfectly bonded to the matrix; the 

interphase is neglectable. 
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− The fibres are long, rectilinear, arranged unidirec-

tionally and uniformly in the matrix in a hexagonal 

scheme. 

− The cylindrical RVC is volume-equivalent to the 

actual hexagonal RVC. 

− The homogenized UFRP composite is a monotropic 

solid body with the direction of monotropy coincid-

ing with the fibre direction. 

− Mass forces vanish. 

RVC extracted from a UFRP composite is a cylinder 

consisting of a circular central disc modelling the fibre 

section and a ring disc modelling the matrix section sur-

rounding the fibre, as shown in [29]. The central disc is 

of radius ? and thickness 2ℎ and the ring disc is of 

outer radius @ and thickness 2ℎ, whereby ? = @AB, 
where B is the real fibre volume fraction. The homoge-

nized RVC is a circular disc with radius @ and thickness 
2ℎ. RVC is described in the ��.2 cylindrical coordi-
nate system corresponding to the ������ Cartesian co-
ordinate system (�� – fibre axis, ���� – transverse isot-
ropy plane). Note that RVC is a 2ℎ thick section of an 
infinitely long two-phase cylinder. 

The constituents and the homogenized UFRP com-

posite are described by the following independent elas-

tic constants: 

− isotropic matrix: ��, 	�, 
− monotropic fibre: ��� – longitudinal Young’s 

modulus, ��� – transverse Young’s modulus, 	��� – 
major Poisson’s ratio in the ���� plane, 	��� – Pois-
son’s ratio in the ���� plane, 
��� – shear modulus 

in the ���� plane, 
− effective elastic constants (EECs) of the mono-

tropic homogenized UFRP composite: �� – longi-
tudinal Young’s modulus, �� – transverse Young’s 
modulus, 	�� – major Poisson’s ratio in the ���� 
plane, 	�� – Poisson’s ratio in the ���� plane,  
�� – shear modulus in the ���� plane. 
The reciprocal Maxwell relations concerning the  

fibre and the homogenized composite, adopted in CAE 

systems, are of the form 

	��� ���⁄ = 	��� ���⁄ ,				�� ��⁄ = 	�� ��⁄ ,			�, � = 1,2,3 

  (33) 

Other EECs describing a fibre and a UFRP composite 

(���, 	���,
���,
���, 	���, 	���, 	���,��, 	��, 	���,��, 	��, 
��,
��, 	��, 	��, 	��) are determined from the trans-

verse isotropy conditions and from Eqns. (33). 

The EECs of the homogenized UFRP composite will 

be determined analytically from the compatibility con-

ditions put on the solutions before and after the homo-

genization of appropriately chosen tasks of the theory 

of linear elasticity (Lamé-type tasks).  

Based on Eqns. (3)5-8, (7)5, (9)1,3, the elastic direc-

tional compliances of a plastic matrix are expressed in 

terms of the elastic shear/bulk compliances of the  

matrix, i.e. 

 ���� = �2��� + �	�� 3⁄ ,			���� = ��	� − ���� 3⁄  (34) 

where (see Eqns. (3)8, (7)5): 

 �� = 1 2
�⁄ 		,			�	 = 1 3��⁄  (35) 

with the shear and bulk matrix modules defined by 

Eqns. (1). By multiplying Eqn. (34) by ���, the follow-
ing dimensionless relationships are obtained: 

 C�� = �2C� + C	� 3⁄ ,			C�� = �C	 − C�� 3⁄  (36) 

where: 

C�� = ��� ��⁄ ,			C�� = −	���� ��⁄ 	,			 	C� = ��� 2
�⁄ ,			C	 = ��� 3��⁄  
(37) 

The following factor equivalent to the selected re-

ciprocal Maxwell relation is defined 

 D = 	��� 	���⁄ = ��� ���⁄  (38) 

In further considerations, quantities 

���� = 1 ��⁄ ,				���� = 1 ��⁄ , 	���� = −	�� ��⁄ ,			���� = −	�� ��⁄  

����� = 1 2
��⁄ = �1 + 	��� ��⁄ = ���� − ����, 	����� = 1 2
��⁄  

(39) 

are elements of elastic compliance matrices ��, ��� of 
the homogeneous monotropic composite, formulated in 

this study.  

The same quantities ����,����,����,����,�����, ����� will be determined from the refined homogeniza-

tion theory. Compliances 

 ��� = �1 − 	��� ��⁄ , ����� = �1 + 	��� ��⁄  (40) 

allow two compliances to be determined, i.e. 

���� = ���� + ������ 2⁄ 		,			���� = ���� − ������ 2⁄   
  (41) 

The following quantities corresponding to RVC are 

introduced: E,�,�,F – integration constants corresponding to the 
matrix, E�,��,�� – integration constants corresponding to the 
fibre, *��,*�, %� – displacement components in cylindrical 

coordinates, corresponding to the matrix, *��,*�,%� – displacement components in cylindrical  

coordinates, corresponding to the fibre, *�,*,% – displacement components in cylindrical  

coordinates, corresponding to the homogenized 

composite, ���,���,���, ����, ���� – stress components in cylin-

drical coordinates, corresponding to the matrix, ���,���,���, ����, ���� – stress components in cylindrical 

coordinates, corresponding to the fibre, 
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��,�� ,��, ���, ��� – stress components in cylindrical 

coordinates, corresponding to the homogenized 

composite, ��, �� – maximum of a selected normal/shear stress, G��, G��,G��, G��,G�,G�, G�,G�,G – auxiliary coefficients. 
The displacement and stress components in the ��.2 coordinate system, corresponding to the homoge-

nized RVC, were illustrated in [29]. 

The following Lamé-type tasks of the theory of  

linear elasticity, referred to RVC before and after ho-

mogenization, were chosen: 1) longitudinal uniform 

tension in the �� direction; 2) axially-symmetric trans-

verse tension in the ���� plane; 3) transverse shear in 
the ���� plane; 4) longitudinal shear in the ���� plane. 
These tasks are illustrated in [29]. 

Consider the first Lamé-type task. The longitudinal 

elongation of both phases *� = const; hence, the normal 

stress distribution before homogenization ��� = const,��� = const and after homogenization �� = const. The 
general solutions are of the form (evidence included  

in [30]): 

− stresses and displacements corresponding to the 

fibre �0 ≤ . ≤ ?�: 
 

��� = 2��	,			��� = 2��*��.� = .12�1 − 	������ − 	������3 ���⁄*������ = ������ − 4	������ ���⁄  (42) 

− stresses and displacements corresponding to the 

matrix �? ≤ . ≤ @�: 
������ = � ��⁄ + 2�,			������ = −� ��⁄ + 2�

����� = ��−���	� − �1 + ��� � ��⁄ + 2�1 − ����� ��⁄
�	���	� = �	��	� − 4���� ��⁄  

  (43) 

− stresses and displacements corresponding to the 

homogenized RVC �0 ≤ . ≤ @�: 
 

�� = 0,			�� = 0*�.� = −.	���� ��⁄ ,			*����� = ���� ��⁄  (44) 

The stress boundary conditions have the form 

 ���	B + ����1 − B� = ��		,			����@� = 0 (45) 

The continuity conditions are of the form 

����?� = ����?�,			*��?� = *��?�, 
 		*���ℎ� = *���ℎ� (46) 

The displacement compatibility conditions have the 

form 

 *��@� = *�@�,			*���ℎ� = *��ℎ� (47) 

Equations (45)-(47) form a system of seven linear  

algebraic equations with unknowns ���,���,��,E, �, 	����,����. The results in terms of the elastic complian-

ces of the homogenized composite are as follows: 

 ���� = �G�C�� − 2G�C��� G ���⁄⁄ , 

 	���� = �G�C�� − 2G�C��� G ���⁄⁄  (48) 

where: 

G� = G��	��� − G��		,			G� = G�� − G��	���	, 	G = G��G�� − G��G�� G�� = �1 − B��1 − 	���� + 

+�1 + B�C��D − �1 − B�C��D	, 			G�� = 1 + B�C�� − 1� G�� = �1 − B�	��� − BC��D	, 	G�� = 2�1 − B�	��� − 2BC�� 

(49) 

Consider the second Lamé-type task. The longitudi-

nal contraction (negative elongation) of both phases *� = const; therefore, the normal stress distribution 

before homogenization ��� = const, ��� = const and 

after homogenization �� = 0. The stresses and dis-
placements corresponding to the fibre and the matrix 

are described by Eqns. (42), (43), whereas for the ho-

mogenized RVC the results are of the form �0 ≤ . ≤ @� 
(evidence included in [30]): �� = ��,			�� = ��*�.� = .�1 − 	����� ��⁄ ,			*����� = −2��	���� ��⁄  

  (50) 

The stress boundary conditions have the form: 

 ���	B + ����1 − B� = 0		,			����@� = �� (51) 

The continuity and compatibility conditions are de-

scribed by Eqns. (46), (47). Equations (46), (47) and 

(51) form a system of seven linear algebraic equations 

with unknowns ���,���,��,E,�, ���,����. The results 
in terms of the elastic compliances of the homogenized 

UFRP composite have the form: 

 
��� = 1C�� + C�� + �G�C�� − 2G�C��� G⁄ 3 ���⁄���� = 1C�� + �G�C�� 2⁄ − G�C��� G⁄ 3 ���⁄  (52) 

where 

G� = BG��H�1 − 	��C��D − I1 − 	���JK+ 

+2BG���	��� + C���(53) 

G� = −2BG���	��� + C���+ 
−BG��H�1 − 	��C��D − I1 − 	���JK 

Coefficients G��,G��, G��,G��, G are defined in Eqns 
(49)3-7. It was proved that Eqns. (48)2, (52)2 are equiva-

lent. 

Consider the third Lamé-type task related to the 

RVC loaded transversely on boundary . = @ with the 
stresses: ����@,2� = �� cos 22 ,			�����@,2� = −�� sin 22  

    (54) 

This load induces a planar strain state ��� = 0�; 
thus, non-uniform normal stresses before and after  

(53) 
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homogenization. The general solutions of this task have 

the following form (evidence included in [30]): 

− stresses and displacements corresponding to the  

fibre �0 ≤ . ≤ ?�: 	����2� = −2E� cos 22,		 	����.,2� = 2�E� + 6��	.�� cos 22 �����.,2� = 2�E� + 3��	.�� sin 22 *��.,2� =

= −2.1�1 + 	����E� + 2�	��� + 	���	������	.�3⁄  ��� ∙ cos 22 %��.,2� =

= 2.1�1 + 	����E� + �3 + 	��� − 2	���	������	.�3⁄��� ∙ sin 22 

 

  (55) 

− stresses and displacements corresponding to the  

matrix �? ≤ . ≤ @�: 
�����, �� = −2�� + 3� ��⁄ + 2� ��⁄ � cos 2� �	���, �� = 2�� + 6��� + 3� ��⁄ � cos 2� ��	���, �� = 2�� + 3��� − 3� ��⁄ − � ��⁄ � sin 2� ����, �� = −2��1 + ���⋅ �� + 2����� − � ��⁄ − 2�1 − ���� ��⁄ 
 ��⁄ ∙ cos 2� ����, �� = 2�[�1 + ���� + �3 + �� − 2��� ��	�� + 

+�1 + ��� � ��⁄ − �1 − �� − 2��� �� ��⁄ ] ��⁄ ∙ sin 2� 
  (56) 

− stresses and displacements corresponding to the  

homogenized RVC �0 ≤ . ≤ @�: 
���2� = �� cos 22,			 ���2� = −�� cos 22,			 ����2� = −�� sin 22 *�.,2� = .�1 + 	����� ��⁄ ∙ cos 22 %�.,2� = − .�1 + 	����� ��⁄ ∙ sin 22 

      (57) 

The stress boundary conditions are defined by Eqns. 

(54). The continuity conditions have the form: 

 
����?,2� = ����?,2�,			�����?,2� = �����?,2�*��?,2� = *��?,2�,			%��?,2� = %��?,2�  (58) 

For the radial direction, the compatibility condition 

has the form 

 *��@,2� = *�@,2� (59) 

and for the circumferential direction 

 %��@,2� = %�@,2� (60) 

Previously, the compatibility condition in the third 

Lamé-type task was used in the form of Eqn. (59) or 

(60) or a linear combination resulting from these equa-

tions was applied [29, 33, 34, 30]. However, the  

experimental values of constants ��, 	�� used in the 
validation of a compatibility condition were uncertain 

(unverified by an independent laboratory). Moreover, 

the compatibility condition in [35] was local and did not 

take into account displacement errors. Therefore, the 

choice of compatibility condition in the third Lamé-type 

task is still unadjusted. 

Enhanced reliability experimental data for UFRP 

composites that can be used to validate experimentally 

the homogenization theory presented in this study were 

reported by Soden et al. [31, 32]. Four UFRP compos-

ites were considered in these references, i.e. EGG/LHD 

(B = 0.62), EGS/MHD (B = 0.60), AS4/3501-6 

(B = 0.60), T300/BSL (B = 0.60), whereby: 

− EGG = long E-glass fibre, 21xK43, Gevetex 

− EGS = long E-glass fibre, 1200tex, Silenka 

− AS4 = AS4 carbon fibre 

− T300 = T300 carbon fibre 

and 

− LHD = LY556/HT907/DY063 epoxy, Ciba-Geigy 

− MHD = MY750/HY917/DY063 epoxy, Ciba-Geigy 

− 3501-6 = 3501-6 epoxy, Hercules 

− BSL = BSL914C epoxy, Ciba-Geigy. 

The elastic constants of the constituents provided in  

[31, 32] are:  

− EGG: ��� = ��� = 80	GPa, 	��� = 	��� = 0.2,			 
��� = 33.33	GPa 

− EGS: ��� = ��� = 74	GPa, 	��� = 	��� = 0.2, 	
��� = 30.83	GPa 

− AS4: ��� = 225	GPa, ��� = 15	GPa, 	��� = 0.2,	��� = 0.0714, 
��� = 15	GPa  

− T300: ��� = 230	GPa, ��� = 15	GPa, 	��� = 0.2,	��� = 0.0714, 
��� = 15	GPa  
and 

− LHD, MHD:  �� = 3.35	GPa, 	� = 0.35 

− 3501-6:  �� = 4.2	GPa, 	� = 0.34 

− BSL:  �� = 4.0	GPa, 	� = 0.35. 
In this study, the EGG/LHD and EGS/MHD com-

posites were used to validate experimentally a compati-

bility condition in the third Lamé-type task. Table 1 

summarizes the predicted values of elastic constants ��, 	�� corresponding to a compatibility condition in 

the form of Eqn. (59) or Eqn. (60). The software devel-

oped in [29] was employed for the prediction. The ex-

perimental methods used to determine the elastic con-

stants of the analysed UFRP composites or any 

arbitrary choice of the selected elastic constants are de-

scribed in [32]. The experimental value of modulus �� 
is of high reliability, while the experimental value of 

Poisson's ratio 	�� seems to be arbitrary and overesti-

mated. Due to the large values of the fibre volume frac-

tion, the values of 	��, 	��� should be close to each 
other. 

 
TABLE 1. Experimental and predicted values of elastic con-

stants �
, �
� for selected UFRP composites 

UFRP EEC Exp. [32] Eqn. (59) Eqn. (60) 

EGG/LHD 
�� 17.7 16.7 7.49 

��� 0.4 0.202 0.639 

EGS/MHD 
�� 16.2 15.5 7.09 

��� 0.4 0.212 0.637 
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By comparing the predicted values with the experi-

mental ones, it can be concluded that the compatibility 

condition imposed on the radial displacements is appro-

priate to determine constants ��, 	��. The compatibility 

condition imposed on the circumferential displacements 

leads to the underestimation of modulus �� and over-
estimation of Poisson’s ratio 	��. The linear combina-

tion lowers the prediction accuracy and should therefore 

not be used.  

Equations (54), (58), (59) form a system of seven 

linear algebraic equations with unknowns E�,��,E,�,�, F, �����. The result on another elastic compliance of the 

homogenized UFRP composite is 

 ����� = 11 + 4�1 − 	�� G� G⁄ 3�C�� − C��� ���⁄  (61) 

where 

�	 = �1 + ��
� − �1 + ��� 		!���		 + ��� − �	� − ��	�� = �		��� − �	���	   

  (62) 

with 
 ��� = 3�1 + ��
���1 ��⁄ − 1� + 

+	4���
� + ���������	�� − 1 ��⁄ � + 

+	�1 + ����3 − 4��� + 1 ��⁄ � ��! 
 ��� = 2�1 + ��
���1 �⁄ − 1� + 

+ �3 + ��
� − 2����������� − 1 �⁄ � + 		+	�2�1 + ��� − �3 + �� − 2��� ��
+ �1 − �� − 2��� � �⁄ 
 ��! 

 ��� = 2�1 + ��
���1 �⁄ − 1� + 

+	2���
� + ����������� − 1 �⁄ � + 

+	2�1 + ����1 − ��� + �1 − ��� �⁄ 
 ��! 
 ��� = 3�1 + ��
���1 ��⁄ − 1� + 

+	2�3 + ��
� − 2����������� − 1 ��⁄ � + 

+	�3�1 + ��� − 2�3 + �� − 2��� �� − �1 + ��� ��⁄ 
 ��! 

(63) 

The fourth Lamé-type task is related to the RVC 

loaded tangentially on boundary . = @ in the longitudi-
nal direction with the following shear stress: 

 �����@,2� = �� cos2 (64) 

This loading induces pure longitudinal shear.  

The general solutions have the following form  

(evidence included in [30]): 

− stresses and displacements corresponding to the 

fibre �0 ≤ . ≤ ?�: 
 �����2� = 
���	E� cos2 ,				*���.,2� = E�	. cos2 (65) 
− stresses and displacements corresponding to the 

matrix �? ≤ . ≤ @�: 
 �����.,2� = 
��E− � .�⁄ � cos2,			 
 	*���.,2� = .�E+ � .�⁄ � cos2 (66) 

− stresses and displacements corresponding to the 

homogenized RVC �0 ≤ . ≤ @�: 
 ����2� = �� cos2		,				*��.,2� = ��	. cos2 
��⁄  (67) 

The stress boundary condition takes the form of 

Eqn. (64). The continuity conditions have the form 

 �����2� = �����?,2�		,				*���?,2� = *���?,2� (68) 

The compatibility condition has the form 

 *���@,2� = *��@,2� (69) 

Equations (64), (68), (69) form a system of four lin-

ear algebraic equations with unknowns E�,E,�,�����. 
The solution to elastic compliance ����� has the form 

����� = C�12C��1 − B� 
��� ���⁄ + 1 + B3/ 
/12C��1 + B� 
��� ���⁄ + 1 − B3/��� (70) 

The refined homogenization theory results in elastic 

compliances ����,����,���,�����,����� defined respec-
tively by Eqns. (48)1,2, (52)1, (61), (70). Compliances ����,���� are calculated from Eqns. (41). Taking into 

account Eqns. (39), the relationships  ���� = ����	,			���� = ����	,			���� = ����	, 
 	���� = ����	,			����� = ����� (71) 

allow the EECs of a homogenized UFRP composite to 

be determined, i.e. 

 �� = 1 ����⁄ , �� = 1 ����⁄ , 	�� = −������	, 
 	�� = −������	, 
�� = 1 2�����⁄  (72) 

In order to validate experimentally the refined ho-

mogenization theory presented in this study, the predic-

tions of EECs are computed for four UFRP composites 

analysed in [31, 32] and described previously in this 

Section, i.e. two composites reinforced with glass fibres 

(EGG/LHD, EGS/MHD) and two composites rein-

forced with carbon fibres (AS4/3501-6, T300/BSL). 

Table 2 summarizes the results of the experimental and 

simulation (prediction) studies on the EECs of the com-

posites under consideration.  

 

TABLE 2. EECs of UFRP composites under consideration – 

experiment and simulation 

EEC 
EGG/LHD EGS/MHD AS4/3501-6 T300/BSL 

Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. 

�� 
[GPa] 

53.48 50.90 45.6 45.76 126 136.70 138 139.63 

�� 
[GPa] 

17.7 16.69 16.2 15.52 11 10.70 11 10.57 

��� 0.278 0.249 0.278 0.252 0.28 0.253 0.28 0.257 

��� 0.4 0.202 0.4 0.212 0.4 0.168 0.4 0.181 

��� 
[GPa] 

5.83 4.60 5.83 4.32 6.6 4.54 5.5 4.35 

 

Note that as described in [31, 32], some of the  

experimental input or output data for carbon fibre-

reinforced composites (���, 	���, 	���,
���, 	��) were 

estimated or adopted arbitrarily. The value of constant 	��� = 0.0714 for both carbon-epoxy composites  

corresponds to an approximate value of 
��� = 7	GPa. 
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Constant 	�� = 0.4 for glass-epoxy composites is of 

reduced reliability.  

In light of Table 2 and the above remarks, the ex-

perimental validation of the refined homogenization 

theory can be evaluated positively. Due to the use of 

analytical solutions of the theory of linear elasticity, the 

EEC prediction results are of higher reliability, pro-

vided that the input data for the prediction is adequate 

and accurate. 

REFINED ELASTIC AND RHEOLOGICAL 
MODELLING OF UFRT COMPOSITES 

The considerations in this section are an abbreviated 

version of those presented in [2], adopting a more natu-

ral system of designations. The ������ Cartesian coor-
dinate system, common for an isotropic matrix and 

a monotropic UFRT composite, coincides with the prin-

cipal directions of the homogenized composite, i.e. �� – 
direction of fibres, ���� – transverse isotropy plane. The 
stress and strain components in the composite are defined 

analogously to a thermoset (see Section 2). 

The assumptions made in the rheological modelling 

of a UFRT composite are as follows: 

− A UFRT composite is a new (unaged) material 

fully relaxed from the residual stresses induced by 

the manufacturing processes. 

− A UFRT composite consists of two components,  

a thermoset matrix and fibres. 

− The fibre is a linearly elastic monotropic material 

with the direction of monotropy coinciding with the 

fibre direction. 

− The fibres have an identical circular cross-section. 

− The fibres are perfectly bonded to the matrix; the 

interphase is neglected. 

− The fibres are long, rectilinear, arranged unidirec-

tionally and uniformly in the matrix in a hexagonal 

scheme. 

− The thermoset matrix is a linearly viscoelastic iso-

tropic material described by the H–R/H rheological 

model, as presented in Section 2. 

− The homogenized UFRT composite is a monotropic 

material with the direction of monotropy coinciding 

with the fibre direction. 

− The homogenized UFRT composite exhibits line-

arly viscoelastic shear strains and linearly elastic 

bulk strains. 

− Quasi-static long-term isothermal rheological proc-

esses under normal conditions are considered. 

− Appropriately low levels of stresses and strains  

secure the reversibility of the rheological processes. 

The effective elastic shear and bulk modules of  

a UFRT composite, corresponding to the transverse 

isotropy plane, are defined as 


�� = �� 2�1 + 	���⁄ ,				 
 �� = �� 3�1 − 2	���⁄  (73) 

Coupled standard constitutive equations of the linear 

elasticity of the homogenized UFRT composite (mono-

tropic material) have the following form (based on [36]) 

 � = ���	,			� = ���� (74) 

where: 

�� = � ���� ���� �������� ����
symm. �����,				 ��� = diag	������,�����,������ ���� = 1 ��⁄ ,				���� = 1 ��⁄ ,			 	���� = −	�� ��⁄ ,			���� = −	�� ��⁄����� = 1 2
��⁄ ,				����� = 1 2
��⁄  

(75) 

Vectors �,�,�, � are defined by Eqns. (3)1-4. Quanti-

ties ��, ��� are elastic compliance matrices correspond-

ing to normal/shear strains. 

Coupled inverse constitutive equations of the linear 

elasticity of the homogenized UFRT composite have 

the following form (based on [36]) 

 � = ���	,			� = ���� (76) 

where: 

�� = ��� = � ���� ���� �������� ����
symm. �����,		 ��� = ���� = diag	������,�����,������ ���� = �� �1 − 	��� � Δ⁄ 	 , 	 ���� = �� �1 − 	��	��� Δ⁄  ���� = ��	�� �1 + 	��� Δ⁄ 	, ���� = �� �	�� + 	��	��� Δ⁄  ����� = 2
��,				����� = 2
��  

Δ = 1 − 	��� − 2	��	���1 + 	��� 

(77) 

Quantities ��,��� are elastic stiffness matrices cor-

responding to normal/shear strains. 

Uncoupled standard/inverse constitutive equations 

of the linear elasticity of the homogenized UFRT com-

posite, equivalent respectively to Eqns. (74)1 and (76)1, 

have the following form (evidence included in [2, 37]) 

 
�� = �!����	,				�	 = �!	��	�� = �!����	,				�	 = �!	��	 (78) 

where: 

���� = diag	���	�, ���
�, ���
��,				 
	��
� = diag	��
	�, �
��, �
��� 

��	� = �1 + �	�"� �	⁄ ,			 
�
	� = �1 − 2�	�"� �	⁄ ,			�
�� = 1 3#�⁄  

���� = �����	 = diag	���	�,���
�,���
��, 

		��
� = ��
��	 = diag	��
	�,�
��,�
��� 
��	� = �	 �1 + �	�"�⁄ ,			�
	� = �	 �1 − 2�	�"�⁄ , 

	�
�� = 3#�  

(79) 
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and 

�� = �� − $��	,			�� = �� − ���	,				�
 = $�	,				�
 = �� 
" = diag	�1, 1, 1�,			# =

1

3
$1 1 %⁄ 1 %⁄% 1 1% 1 1

& , 		' = ()*� − *���+ 
L = 	�� 	��⁄ ,				�� = 	�� �� ��⁄M = diag	�F�,F�,F��	,			F� = 1 ��	�� − �����⁄ ,			 F� = 1 ��	�� − ������⁄  

  (80) 

The following nomenclature and interpretation are 

introduced: ��, �	,��,�	 – vectors of the elastic quasi-
shear/quasi-bulk strains/stresses in a monotropic mate-

rial, �!��,�!	� – elastic quasi-shear/quasi-bulk compli-

ance matrices describing a monotropic material, �!��,�!	� – elastic quasi-shear/quasi-bulk stiffness  

matrices describing a monotropic material, �, ,N – 

transformation matrices, L – monotropy ratio. Note that  � = �� + �	, � = 	 �� + �	. In addition, it can be dem-

onstrated that (evidence included in [2]) 

 �� = �!����−  �+ �!	� ,			 
 		�� = �!����− N�+ �!	�N (81) 

The shear-bulk decoupling of Eqns. (74)1 and (76)1 

allows the results of the rheological modelling of the 

thermoset (presented in Section 2) to be generalized to 

model the homogenized UFRT composite. 

Uncoupled standard constitutive equations of the 

linear rheology of the homogenized UFRT composite, 

corresponding to Eqns. (78)1,2, (74)2, are predicted in 

the following form (compare with Eqns. (10)): ����� = �!����⊗ �����,			 		�	��� = �!	��	���,						���� = �����⊗ ���� (82) 

for time variable � ≥ 0, with 

������ = diag	���	���, ���
���, ���
���� 
����� = diag	����
���, ��	����, ��	����� 

��	��� = ��	� %1 + 		 
 ����	
��

�

& 
������� = ����� %1 + 	�� 
 ����	
��

�

& ,			'( = 23, 12 

���� =
1

)� 
 exp *−
��
)�+ �	,���	
�

�

�

 

,��� =
sin -�
-�

��

1 + 2�� cos -� + ���
, 0 < � < 1 

(83) 

 

The nomenclature and interpretation are as follows: ,�*� – function defining a Mittag-Leffler fractional 

exponential function in an integral form, r – fraction 

defining a Mittag-Leffler fractional exponential func-

tion in an integral form, (� – retardation time, $��� –  
a Mittag-Leffler fractional exponential generic function 

in an integral form for shear/quasi-shear stresses, �!���� 
– elastic-viscoelastic quasi-shear compliance matrix, 

����� – elastic-viscoelastic shear compliance matrix, "�, "��, "�� – long-term creep coefficients, ⊗ – convolu-

tion product operator. 

A linear rheological model of the homogenized 

UFRT composite, governed by Eqns. (82), (83), is also 

denoted H-R/H. Under the assumptions made, the com-

posite is described by five independent elastic constants 

(��,��, 	��, 	��,
��) and five independent viscoelastic 
constants ((�, ., "�, "��, "��). A mechanical representa-

tion of the H-R/H model for the homogenized UFRT 

composite consists of three uncoupled H-R subsystems 

and two uncoupled H subsystems. 

Constants (�, . are determined experimentally for 

the thermoset matrix and are common to the matrix and 

the UFRT composite. This hypothesis will be con-

firmed in further considerations for the selected UFRT 

composites. An analytical algorithm for determining 

constants "�, "��, "��, based on the homogenization  

theory for a UFRT composite with monotropic fibres 

and VECP, will be formulated in further considerations. 

The general formulation of a creep stress pro-

gramme is  ����� = ���/���,			�	��� = �	�/���,			���� = ��/���  
  (84) 

where: ���,�	�,�� – quasi-shear, quasi-bulk, and shear 
constant stresses in a differential volume of the com-

posite. The strain response to the creep stress pro-

gramme has the form 

 ����� = �!��������,			�	��� = �!	��	�, 

 	���� = �������� (85) 

where: 

������� = diag	���	����, ���
����, ���
����� ������ = diag	����
����, ��	�����, ��	������ ��	���� = ��	��1 + 		.����,			 �������� = �����/1 + 	��.(�)0,			'( = 23, 12 

(86) 

Creep function 2��� is defined by Eqn. (14). 
Complex compliances of the homogenized UFRT 

composite are expressed as: 

��	∗ �1� = ��	� �1� + i��	�� �1�		 
����∗ �1� = ����� �1� + i������ �1� 

��	� �1� = ��	��1 + 		2�1)�, ���			 
��	�� �1� = −��	�		3�1)�, �� 

����� �1� = �����/1 + 	��2�1)�, ��0		 
������ �1� = −�����	��3�1)�, ��, '( = 23, 12 

2�1)�, �� =
1 + �1)��� cos�-� 2⁄ �

1 + 2�1)��� cos�-� 2⁄ � + �1)���� 

3�1)�, �� =
�1)��� sin�-� 2⁄ �

1 + 2�1)��� cos�-� 2⁄ � + �1)���� 

 

(87) 

with the following interpretation and nomenclature: ���∗ �;�,����∗ �;� – complex quasi-shear/shear compli-

ances, ���� �;�,����� �;� – quasi-shear/shear storage 

compliances, ����� �;�,������ �;� – quasi-shear/shear loss 
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compliances. The storage and loss compliances have 

properties analogous to those described by Eqns. (A.3) 

in Appendix A. 

Uncoupled inverse constitutive equations of the lin-

ear rheology of the homogenized UFRT composite have 

the following form: 

 ����� = �!����⊗ �����		 				�	��� = �!	��	���,						���� = �����⊗ ���� (88) 

for time variable � ≥ 0, with: 

������ = diag	�������,�������,��������, 		����� = diag	��������,�������,�������� 
������ = ���	 	1 − 
�� Ψ����	
�




�


 
		Ψ���� =

1

��� � exp�−
��
�����	����	
�




�

 

������� = ����	 	1 − 
�� � Ψ�����	
�



�


		 
Ψ����� =

1

���� � exp�−
��
������	����	
�




�

 


� =
��

1 + �� 		,			��� = �� exp �1

� ln
1

1 + ��� 

�� =

���
1 + ��� 		,			���� = �� exp�1

� ln
1

1 + ���� 		,			�� = 23, 12 

(89) 

The following nomenclature and interpretation are 

introduced: ("� ,("��  – relaxation times, =����, Ψ����� – 
strain generic functions, �!���� – elastic-viscoelastic 
quasi-shear stiffness matrix, ����� – elastic-viscoelastic 
shear stiffness matrix, &�,&�� – long-term relaxation 

coefficients. Viscoelastic parameters &�,&�� ,("� ,("��  
are expressed in terms of previous viscoelastic parame-

ters "�, "�� ,(�, as specified in Eqns. (89)7-10. Function ,�*� is defined by Eqn. (83)6 equivalent to Eqn. (11)3. 
The general formulation of a relaxation strain pro-

gramme is 

 ����� = ���/���,			�	��� = �	�/���, 
 	���� = ��/��� (90) 

where: ���, �	�,�� – quasi-shear, quasi-bulk, and shear 
constant strains in a differential volume of the compos-

ite. The stress response to the relaxation strain pro-

gramme has the form: 

 ����� = �!�#������,			�	��� = �!	��	�, 

 	���� = ��#����� (91) 

where: 

������� = diag	���	����,���
����,���
����������� = diag	����
����,��	�����,��	��������	���� = ��	��1 − 
	4	����,			
 

�������� = �����/1 − 
��4��(�)0,			'( = 23, 12 

(92) 

with relaxation functions: 

4	��� = 
 �	���	
�
�

�

= 1 − 
 exp 5−
��
)��6,���	
��

�

4����� = 
 ������	
�
�

�

= 1 − 
 exp 5−
��
)���6,���	
��

�

	,			
'( = 23, 12 

  (93) 

Coupled standard/inverse constitutive equations of 

the linear rheology of the homogenized UFRT compos-

ite result from Eqns. (80)1-4, (82), (88), i.e.: 

 
���� = ����⊗ ����	,				���� = �����⊗ �������� = ����⊗ ����	,				���� = �����⊗ ���� (94) 

where: 

 ���� = �!����	��−  � + �!	�	 	, 
 		���� = �!����	��− N�+ �!	�	N (95) 

are the elastic-viscoelastic compliance and stiffness ma-

trices of a homogeneous monotropic material. Trans-

formation matrices �, ,N are defined by Eqns. (80)5-11. 

Equations (94) can be rewritten in the following 

equivalent form: 

���� = ��	����+ �$�����−  �⊗ ����		, ���� = �������+ ��$���⊗ ���� 
���� = ��	����+ �$�����− N�⊗ ����, 		 	���� = �������+ ��$���⊗ ���� 

(96) 

where: 

����� = diag���	���, ���
���, ���
���� ������ = diag����
���, ��	����, ��	�����		 
��	��� = ��	�		 
 ����	
��

�

			 
������� = �����	�� 
 ����	
��

�

,			'( = 23, 12 

����� = diag���	���,���
���,���
����			 	������ = diag����
���,��	����,��	����� 
��	��� = −��	�
	 
 �	���	
�

�

�

,		 
������� = −�����
�� 
 ������	
�

�

�

, 	'( = 23, 12		 

(97) 

Generic functions: $���,=����,=�����, �� = 23, 12 

are defined by Eqns. (83)5,6, (89)4,6. Equations (96) 

highlight the separation of the elastic parts from the vis-

coelastic parts of the UFRT composite response. 

REFINED FORMULATION OF COMPLEMENTARY 
PROBLEMS PRESENTED IN [29] 

Function ,�*�, 0 < . < 1, defining a Mittag-Leffler 

fractional exponential function in an integral form  

(Eqn. (11)3), is an intermediate continuous function  

between Dirac function ��* = 1� for . = 1 and Dirac  
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function ��* = 0� for . = 0, and contains a singularity 

at point * = 0 (Eqns. (A.1)1-3 in Appendix A).  

A general integral 

 O = 5 B�*�	&*


�
 (98) 

with subintegral function B�*� containing ,�*� is cal-
culated numerically using a high-rank n-point Gauss- 

-Legendre quadrature (evidence included in [29]) 

 O ≈ 2∑ 1Q�B�*�� �1 + ����⁄ 3%
�&� 			 

 	*� = �1 − ��� �1 + ���⁄  (99) 

Quantities Q� ,�� ,� = 1, 2, … , R, are the weights and 
nodes of the n-point quadrature. Each subintegral func-

tion is approximated with a �2R + 1�th degree polyno-
mial. Equations (99) are used for integrals occurring  

in functions (�	$���,2���, whereby � = � (�⁄ ,			*� =

= exp�. ln*�. The most accurate quadrature of degree 

available R = 32 [38] was used (evidence included  
in [29]). 

To identify the isotropic thermoset matrix material 

constants describing the H–R/H rheological model,  

a stress-controlled tension creep test was used, per-

formed experimentally on the thermoset sample in  

direction x1. The creep process is preceded by a rela-

tively rapid linear increase in stress ����� to the level ��� > 0, which induces a quasi-linear increase in longi-

tudinal strain ����� to the level ��� > 0, as well as to  

a quasi-linear decrease in transverse strain ����� to the 
level ��� < 0. Note that ����� = �����. The elastic con-
stants of the thermoset are identified from the classical 

equations 

 �� = Δ�� Δ��⁄ 	,				� = − Δ�� Δ��⁄  (100) 

where Δ��, Δ��, Δ�� are stress/strain increments that 

precede the extreme values ���, ���, ���, respectively. 
Stress level ��� was assumed to provide the reversibil-

ity of creep strains. 

After reaching stress level ���, the sample is sub-

jected to creep under stress ��� over time interval � ∈ 10,('3, where (' – long-term creep time. The re-

corded experimental directional strains ��(���, ��(��� 
are converted to experimental shear and bulk strains 

(see Eqns. (6) and (7)) 

 ���(��� =
�

�
1��(���− ��(���3	, 

 �	(��� = 	 �
�
1��(���+ 2��(���3 (101) 

induced by  

���( =
2

3
���	,			�	( =

1

3
��� (102) 

The H-R/H rheological model results in approximate 

equations (see Eqns. (6)1, (13)1) 

 ���(��� = 11 + "2���3���(�0�, 
 	�	(��� = �	(�0�	,			� ≥ 0 (103) 

with � = � (�⁄ . The values of the simulation creep func-

tion 2��� corresponding to the creep times ((�, 0.1(�) 
are denoted as 

 ? = 	2�1�	,			@ = 	2�0.1� (104) 

The readings from experimental graph ���(��� and 
the final calculation accuracy are recommended to  

3 meaningful digits. 

An analytical iterative algorithm to identify viscoe-

lastic constants (�, ", ., based on Eqn. (103)1 is pre-
sented in [29]. An abbreviated refined description of 

this algorithm is provided below. Abscissa S = log � 
corresponding to the inflection point on chart ���(��� 
on a logarithmic time scale is read, hence  (� = exp�S ln 10�. The value of fraction . is predicted 
and ?�.� is calculated. The other constants are calcu-
lated from the following equations: 

 " = 1���(�(�� ���(�0�⁄ − 13 ?⁄ , 
 		@ = 1���(�0.1(�� ���(�0�⁄ − 13 "⁄  (105) 

The next iteration, if any, is preceded by the calcula-

tion of .�@� and ?�@�. 
Once constants (�, ., " are determined, the simula-

tion shear strain graph is calculated, i.e. 

 ������ = 11 + "2���3���(�0�	,			� ∈ 10,('3 (106) 

and presented on a logarithmic time scale (S = log �) 
against the experimental shear strain graph.  

A set of T quasi-equally spaced collocation points on  

a logarithmic time scale are chosen. The relative error is 

 � = ∑ U���I��J− ���(I��JU�
�&� ∑ ���(I��J�

�&�V  (107) 

whereby: 

7�	8��9 = /1 + 	.8:�907�	��0� 
:� = �� )�⁄ ,			.8:�9 = 1 − 
 exp8−�:�9 ,���	
�

�

�

, 

	�� = 10�� ,			' = 1, 2, … ,; 

(108) 

Constant . appears in function ,�*�. 
According to the H-R/H rheological model formu-

lated in Section 4, the homogenized UFRT composite  

is described by five viscoelastic constants (�, ., "�, "��, "��. Constants (�, . are common to the matrix and the 

composite. Long-term creep coefficients "�, "��, "�� can 
be determined analytically using VECP (the viscoelas-

tic-elastic correspondence principle). 

Unconjugated standard constitutive equations of the 

linear elasticity of the homogenized UFRT composite 

(78)1,2, (74)2 are expressed in terms of quasi-shear/shear 

elastic compliances ����,�����,�����. Based on Eqns. 
(71), (75)3,5, (79)3, one obtains 

 ���� = ���� − L���� (109) 

As a result of the improved homogenization  

theory developed in this study, elastic compliances 
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�����C�, C	�,  �����(C�, C	),  �� = 23, 12, are dependent 

on dimensionless elastic compliances of the thermoset 

matrix. 

The complex compliances of the homogenized 

UFRT composite defined by Eqns. (87) can be rewritten 

in the following dimensionless form: 
 

���∗ ��� = ���∗ ��� ����⁄ = ���� ��� + i����� ��� 

���� ��� = 1 + ������,			����� ��� = −��
��� 
����∗ ��� = ����∗ ��� �����⁄ = ����� ��� + i������ ��� 

����� ��� = 1 + �������,			 
������ ��� = −���
���,				�� = 23, 12 

���� =
1 + �� cos�
� 2⁄ �

1 + 2�� cos�
� 2⁄ � + ���
	, 


��� =
�� sin�
� 2⁄ �

1 + 2�� cos�
� 2⁄ � + ���
,			� = ��� 

(110) 

Quantities C��� �W�,			C���� �W�, �� = 23, 12, were 

called H-R/H storage compliances. 

The complex compliances of a homogenized UFRT 

composite calculated using VECP are expressed by the 

following formulas: 

C���∗ �W� = ����1C�∗�W�, C	3 ����⁄ =

= C���� �W�+ iC����� �W� 
C����∗ �W� = �����1C�∗�W�, C	3 �����⁄ =

= C����� �W�+ iC������ �W�	, 		�� = 23, 12 

(111) 

where, based on Eqns. (20), (37)3, (54)7-9, 
 C�∗�W� = C���W�+ iC����W�	 
       	  	C���W� = C�11 + "X�W�3		 (112) 

   	C����W� = −C�"Y�W�  
 

are respectively the dimensionless complex shear com-

pliance, shear storage compliance, and shear loss com-

pliance of the thermoset matrix. Quantities C���� �W�,			C����� �W�, �� = 23, 12, were called VECP 

storage compliances. 

Viscoelastic constants "�, "��, "�� are determined 

from the following conditions (evidence included in 

[29]): 
 

 C��� �W"� = C���� �W"�		 
 	C���� �W"� = C����� �W"�,			�� = 23, 12 (113) 
 

where W" = 0.159 is the value at which conditions X�W� ≈ 0.5,			Y�W� = min are met. Inserting Eqns. 

(110)2,5 into Eqns. (113) yields 
 

 "� = 1C���� �W"�− 13 X�W"�⁄ 		 
 	"�� = HC����� �W"�− 1K X�W"�⁄ ,			�� = 23, 1 (114) 
 

To validate the H-R/H rheological model of the  

homogenized UFRT composite, the relative errors of 

deviation of graphs C��� �W�, C���� �W�, �� = 23, 12 from 

respective graphs C���� �W�, C����� �W�, �� = 23, 12 are 

used, defined as 

�� = � |���� ���� − ����� ����|
�

���

� ����� ����
�

���

�

��� = � ������ ���� − ������ �����
�

���

� ������ ����
�

���

� ,

 

'( = 23, 12 

(115)

 

whereby W) = 2-�) , �) = Z ∙ ∆�,			Z = 1, 2, … ,[. 
NUMERICAL ANALYSES 

The computations were performed using the  

authors’ own computer programme written in Pascal. 

The computational paths are as follows: 

1) testing the accuracy of the integration of improper 

integrals containing a Mittag-Leffler fractional  

exponential generic function, by means of high-rank 

Gauss-Legendre quadratures, 

2) numerical analysis of creep functions defined by 

a Mittag-Leffler fractional exponential generic  

function, 

3) numerical analysis of the complex compliance of 

a thermoset, corresponding to a Mittag-Leffler frac-

tional exponential generic function, 

4) identification of the viscoelastic constants of 

a thermoset corresponding to the H-R/H rheological 

model, based on the unidirectional tension creep ex-

perimental test data, 

5) calculation of the EECs of a UFRT composite, based 

on the refined homogenization theory, 

6) numerical analysis of the complex compliances of 

a UFRT composite, corresponding to a Mittag- 

-Leffler fractional exponential generic function, 

7) identification of the effective viscoelastic constants 
of a UFRT composite corresponding to the H-R/H 

rheological model using VECP. 

The results of testing the accuracy of the integration 

of improper integrals are presented in [29]. Quadratures 

of degrees R = 15, 25, 32 were tested with the nodes 

and weights taken from [38]. The most accurate quadra-

ture of degree available, R = 32, was applied in the 

subsequent paths. The graphs of creep function 2��� 
were shown on a semi-logarithmic scale with abscissa � = log � and analysed in [29]. The values of the creep 
function at points (�, 0.1(�, corresponding to the  

selected values of ratio ., i.e. ? = 2�1�, @ = 2�0.1�, 
are given in [29]. 

Numerical validation of the H-R/H rheological 

model of UFRT composites was carried out on the  

selected enhanced reliability UFRT composites consid-

ered in [31, 32], i.e. EGS/MHD (glass/epoxy), 

T300/BSL (carbon/epoxy). The elastic constants of the 

constituents as well as fibre volume fractions provided 

in [31] are cited in this study. The simulated EECs of 

these composites, based on the improved homogeniza-

tion theory, are listed in Table 2. 

Due to the lack of publications on experimental 

creep tests on MHD and BSL epoxy resins, the unidi-

rectional tension creep experimental test on Epidian 53 



  Novel rheological modelling of thermosets and unidirectional monotropic fibre

epoxy resin presented in [24] was used to simulate the 

shear/quasi-shear storage compliances of the compo

ites under study. The test was performed on a new sa

ple made of Epidian 53 structural epoxy resin 

(former manufacturer Organika Sarzyna Chemical 

Plants, Sarzyna, Poland) under near-normal conditions. 

The experiment was conducted in 2002 at the Labor

tory of Strength of Materials and Structures, Faculty of 

Mechanical Engineering, Military University of Tec

nology, Warsaw, Poland (https://imiio.wim.wat.edu.pl), 

using a lever creeper without a thermal chamber.

According to the Technical Data Sheet of Epidian 

53 resin, the basic material constants are: tensile 

strength �� � 52	MPa, ultimate longitudinal strain 

	� � 2.4	% � 0.0240 � 24000	με, heat distortion te
perature �� � 55	�, where με denotes micro strain 

(1	με � 10��). 

The unidirectional tension creep experimental test 

was performed according to the experiment conditions 

described in this study. The longitudinal normal stress 

was ��� � 0.30�� � 15.6	MPa, which guaranteed r

versibility of the creep process. From the pre

stress rapid increase process, the following parame

were identified: 

�� � 3.14	GPa	,			�� � 0

	�� � 4970	με	,				�� � �2080

		�
�0� � 4700	με	,				�
�0� �

Figure 1 presents the original graphs of experimental 

directional strains 	�
� �, 	�
� �, recorded in interval 
!0, ��", �� � 10
	min. A progressive recording time 

step from 0.005 min to 275 min was applied. 

to the prediction of reversible creep, the strain rates d

crease monotonically.  

Figure 2 shows experimental directional strains 

	�
� �, 	�
� � on a logarithmic time scale. The levels of 

the elastic strains are indicated by dashed lines. The 

charts were used to identify the viscoelastic constants. 

Note that the long-term creep time 

(~70 days) would have to be extende

10 times to completely prove the creep reversibility h

pothesis. Moreover, an experimental recovery test after 

removing the unidirectional tension stress would be r

quired. The interpretation of small oscillations in the 

strain patterns on a logarithmic time scale requires add

tional creep tests performed on a set of samples using 

a thermal chamber. 

Figure 3 shows the shear and bulk strains on a log

rithmic time scale, corresponding to the epoxy creep 

test, calculated according to Eqns. (101

elastic strains are marked with dashed lines. The co

stant bulk strain hypothesis was fully confirmed.

The results of the identifying the viscoelastic co

stants of the Epidian 53 epoxy resin are as follows: 

�� � 70800	min, & � 1.40, ' � 0.540
error of the deviation of the 		�� � 
from the 		�
� � experimental graph on a logarithmic 

time scale, calculated in interval ( �
( ∈ !0.1	min, 10
	min") is * � 2
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epoxy resin presented in [24] was used to simulate the 

shear storage compliances of the compos-

as performed on a new sam-

ple made of Epidian 53 structural epoxy resin  

(former manufacturer Organika Sarzyna Chemical 

normal conditions. 

The experiment was conducted in 2002 at the Labora-

d Structures, Faculty of  

Mechanical Engineering, Military University of Tech-

nology, Warsaw, Poland (https://imiio.wim.wat.edu.pl), 

using a lever creeper without a thermal chamber. 

According to the Technical Data Sheet of Epidian 

al constants are: tensile 

ultimate longitudinal strain 

heat distortion tem-

denotes micro strain 

The unidirectional tension creep experimental test 

rmed according to the experiment conditions 

. The longitudinal normal stress 

, which guaranteed re-

versibility of the creep process. From the pre-creep 

stress rapid increase process, the following parameters 

0.418

2080	με

� 270	με
 

presents the original graphs of experimental 

, recorded in interval 

. A progressive recording time 

min was applied. According 

to the prediction of reversible creep, the strain rates de-

Figure 2 shows experimental directional strains 

on a logarithmic time scale. The levels of 

the elastic strains are indicated by dashed lines. The 

charts were used to identify the viscoelastic constants. 

term creep time �� � 10
	min  
would have to be extended by at least  

10 times to completely prove the creep reversibility hy-

pothesis. Moreover, an experimental recovery test after 

removing the unidirectional tension stress would be re-

quired. The interpretation of small oscillations in the 

logarithmic time scale requires addi-

tional creep tests performed on a set of samples using  

shows the shear and bulk strains on a loga-

rithmic time scale, corresponding to the epoxy creep 

test, calculated according to Eqns. (101). The levels of 

elastic strains are marked with dashed lines. The con-

stant bulk strain hypothesis was fully confirmed. 

the viscoelastic con-

stants of the Epidian 53 epoxy resin are as follows:  

540. The relative 
� � simulation graph 

experimental graph on a logarithmic 

� log  ∈ !�1, 5" 
2.3% (Fig. 4).  

The H-R/H model was assessed as adequate (

. 70	days). The long-term shear strain value predicted 

by Eqn. (106) is 		��∞� � �1
The long-term relaxation coefficient and relaxation time 

of the Epidian 53 epoxy resin calculated from Eq

(22)1, (23) are 3 � 0.583, ��
 

Fig. 1. Directional strains in unidirectional tension creep experimental 

test on epoxy specimen 

Fig. 2. Directional strains on logarithmic time scale in unidirectional 

tension creep experimental test on

Fig. 3. Shear and bulk strains on logarithmic time scale in unidirectional 

tension creep experimental test on epoxy specimen

Fig. 4. Simulated shear strain graph ����

graph ������� in unidirectional tension creep test on epoxy specimen
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del was assessed as adequate (10
	min 
term shear strain value predicted 

� 4 &�		�
�0� � 11280	με. 
term relaxation coefficient and relaxation time 

of the Epidian 53 epoxy resin calculated from Eqns. 

� 14000	min. 

 
Directional strains in unidirectional tension creep experimental 

 
Directional strains on logarithmic time scale in unidirectional 

st on epoxy specimen 

 
Shear and bulk strains on logarithmic time scale in unidirectional 

st on epoxy specimen 

 
��� against experimental shear strain 

ectional tension creep test on epoxy specimen 
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The results of identifying the viscoelastic constants 

of the EGS/MHD (glass/epoxy) UFRT composite, using 

Eqns. (114), (89)7-10 and reported to 3 significant digits, 

are as follows: "� = 0.0425, &� = 0.0408, ("� = 65500	min"�� = 1.18,												&�� = 0.542, ("�� = 16700	min"�� = 1.22,												&�� = 0.549, ("�� = 16200	min

 

The H-R/H and VECP storage compliances were 

calculated according to Eqns. (110)-(112) for  W ∈ 12- ∙ 0.001,			2- ∙ 0.5003 with step Δx = 0.001. 
Figure 5 presents the H-R/H storage compliances 

against the relevant VECP storage compliances. The 

relative errors are 

�� = 0.21	%,							��� = 0.05	%,							��� = 0.004	%	 
calculated according to Eqn. (115) for [ = 500. The 
results prove that the numerical validation of the H-R/H 

rheological model is positive for UFRT composites re-

inforced with isotropic (glass) fibres. 

The results of identifying the viscoelastic constants 

of the T300/BSL (carbon/epoxy) UFRT composite,  

using Eqns. (114), (89)7-10 and reported to 3 significant 

digits, are as follows: "� = 0.0145, 			&� = 0.0143, 		("� = 68900	min"�� = 0.716, 				&�� = 0.417, 			("�� = 26000	min"�� = 1.03,								&�� = 0.508, 			("�� = 19000	min

 

The H-R/H and VECP storage compliances were 

calculated according to Eqns. (110)-(112) for  W ∈ 12- ∙ 0.001,			2- ∙ 0.5003 with step Δx = 0.001. 
Figure 6 presents the H-R/H storage compliances 

against the relevant VECP storage compliances.  

The relative errors are 

�� = 0.08%,							��� = 0.14%,							��� = 0.02%	 
calculated according to Eqn. (115) for [ = 500. 

The results prove that the numerical validation of 

the H-R/H rheological model is positive for UFRT 

composites reinforced with monotropic (carbon) fibres. 

 

 
Fig. 5. H-R/H storage compliances ���

� �	�, ����
� �	�, ����

� �	� against 

VECP storage compliances ����
� �	�, �����

� �	�, �����
� �	� for 

EGS/MHD composite 

 
Fig. 6. H-R/H storage compliance ���

� �	�, ����
� �	�, ����

� �	� against 

VECP storage compliance ����
� �	�, �����

� �	�, �����
� �	� for 

T300/BSL composite 

Given the negligibly small values of viscoelastic 

constant "� compared to unity as evidenced in this  

Section, "� = 0 can be assumed. The number of inde-

pendent effective viscoelastic constants describing  

a UFRT composite reduces then to four, i.e. (�, ., "��, "��. In Eqns. (82)1, (88)1, (96), one should as-
sume 

 ������ = ����,			������ = ����,					 
 �$���� = 0,			�$���� = 0 (116) 

Based on the simulated exemplary UFRT materials, 

the following final conclusions can be formulated: 

− The H-R/H rheological model is adequate for  

thermosets in the technically relevant interval  

t ∈ [0, 10
5
 min]. 

− The H-R/H rheological model is adequate for UFRT 

composites in the technically relevant interval  

t ∈ [0,  10
5
 min]. 

− Two viscoelastic constants, i.e. retardation time (� 
and fraction ., are common to the thermoset matrix 

and the UFRT composite. 

− Shear creep in the monotropy and transverse isot-

ropy planes of UFRT composites is dominant.  

The elastic fibres are very effective at suppressing 

the viscoelastic effects in URFT composites under 

tension/compression in the fibre direction. 

CONCLUSIONS 

Refined fully analytical modelling of the linear 

rheology of thermosets and unidirectional monotropic 

fibre-reinforced thermoset matrix (UFRT) composites 

was developed. The components of a UFRT composite 

were assumed to be a linearly elastic-viscoelastic iso-

tropic material (matrix) and a linearly elastic mono-

tropic material (fibre). The homogenized UFRT com-

posite was assumed to be a linearly elastic-viscoelastic 

monotropic material. All the solutions as well as the all 

the transformations transforming one quantity/equation 

into another are analytical. 
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New rheological models labelled H-R/H for thermo-

sets and UFRT composites with monotropic fibres are 

described by the smallest possible numbers of the mate-

rial constants. A single Mittag-Leffler fractional expo-

nential generic function in an integral form, common to 

the thermoset matrix and the homogenized UFRT com-

posite, guarantees prediction of the rheological proc-

esses with good accuracy. The H-R/H model of  

a thermoset was described by two independent elastic 

constants (��, 	�) and three independent viscoelastic 
constants ((�, ., "). The H-R/H model of the homoge-

nized UFRT composite was described by five inde-

pendent elastic constants (��,��, 	��, 	��,
��) and four 
independent viscoelastic constants ((�, ., "��, "��), 
whereby constants (�, . are common to the thermoset 

matrix and the UFRT composite.  

The refined analytical constitutive modelling of the 

linear rheology of thermosets was validated positively on 

the selected epoxy resin. The considerations were limited 

to quasi-static isothermal reversible rheological proc-

esses. Further development would require comprehensive 

elastic and rheological experiments on selected thermo-

setting polymers, taking into account the effects of the 

stress level, temperature, time and material ageing. 

The improved homogenization theory and the re-

fined analytical constitutive modelling of the linear 

rheology of UFRT composites were validated positively 

on selected increased reliability UFRT composites 

taken from [31, 32]. The considerations were limited to 

quasi-static isothermal reversible rheological processes.  

The most important, new and original elements in 

the presented study are as follows: 

− formulation of the refined rheological modelling of 

thermosets, 

− formulation of the improved homogenization theory 

of UFRT composites with monotropic fibres, 

− formulation of the refined rheological modelling of 

UFRT composites with monotropic fibres, 

− formulation of the H-R/H rheological models that 

describe thermosets and UFRT composites by the 

smallest possible numbers of elastic and viscoelastic 

constants, 

− experimental validation of the improved homogeni-

zation theory on selected increased reliability UFRT 

composites, 

− experimental validation of the H-R/H rheological 

model of thermosets carried out on selected epoxy 

resin, 

− numerical validation of the H-R/H rheological 

model of UFRT composites carried out on selected 

increased reliability UFRT composites with mono-

tropic or isotropic fibres. 

Further development of the elasticity and rheology 

of UFRT composites would require comprehensive 

elastic and rheological experiments on selected compos-

ites, taking into account the effects of the stress level, 

temperature, time and material ageing. 

APPENDIX A.  SELECTED MATHEMATICAL 
FORMULAS [2, 29] 

Functions ,�*�,$���,2��� have the following prop-
erties: 

,��� ≥ 0			for			� ≥ 0	,				 - ,���	.��

�
= 1	,				 lim�→��

,��� = ∞

��/� > 0			�0�			/ > 0	,			 lim�→��
��/� = ∞	,				 lim�→� ��/� = 0��0� = 0	,				��∞� = lim�→� φ�/� = 1

  

  (A.1) 

The initial creep velocity of a thermoset correspond-

ing to the H-R/H rheological model has an infinite 

value, i.e. 

2] ��� =
"��
�

"

= $���	,				2] �0� = lim
→��

$��� = ∞	 
  (A.2) 

For � > 0, velocity 2] ��� drops sharply to a low 
value, as observed in the experimental tests. 

The shear storage and loss compliances that describe 

the rheological properties of a thermoset have the fol-

lowing properties: 

������ > 0	,				����0� = �1 + ��	�� 	,				lim�→� ������ = ��������� < 0			�0�			� > 0	,				�����0� = 0	,				 lim�→� ������� = 0
  

  (A.3) 

When . → 1, a Mittag-Leffler generic function be-

comes a normal exponential function, i.e. 

 ,�*� = ��* − 1�	,				$��� =
�

��
exp 6−




��
7	,			 

 	=��� =
�

��
exp 6−




��
7 (A.4) 

where ��* − 1� is a Dirac function. The final equations 
for case . → 1, useful for comparative purposes, are 

collected below: 

− creep/relaxation functions: 

2��� = 1 − exp�− � (�⁄ � ,				>��� = 1 − exp�− � (�⁄ �  
  (A.5) 

− time conversion: 

 (� = (� �1 + "�⁄  (A.6) 

− Laplace transforms of generic functions: 

 $:�9� =
�

�����
,				=:�9� =

�

�����
 (A.7) 

− shear storage and loss compliances: 

 ����;� = ��� ^1 + " �

���-���
�
_ , 

 		���" �;� = −��" -��

���-���
�
 (A.8) 

Equations (A.4)-(A.8) describe the H-K/H rheologi-

cal model (standard model) of an isotropic material. 
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