Łukasz Wierzbicki1, Anna Danelska2, Karolina Olszewska3, Mariusz Tryznowski2, Dorota Zielińska3, Iwona Kucińska3, Mikołaj Szafran2, Marcin Leonowicz1

1 Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
2 Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw, Poland
3 Institute of Security Technologies MORATEX, ul. M. Skłodowskiej-Curie 3, 90-965 Łódź, Poland

*Corresponding author. E-mail: lwierzbicki@inmat.pw.edu.pl

Received (Otrzymano) 9.04.2013

SHEAR THICKENING FLUIDS BASED ON NANOSIZED SILICA SUSPENSIONS FOR ADVANCED BODY ARMOUR

Composite structures built of para-aramid fabric and shear thickening fluid (STF) are developed in the light of their potential application in smart body armour. The study reports on the rheological behaviour of nanosized silica suspensions. Depending on the oligomer chemical structure and molecular weight, we observe different behaviour under shear stress. The STF composed of PPG400 and containing various volume fraction of FS showed good time stability. The compositions containing 6.5 and 11.7 vol. % of silica maintain their rheological properties, although the composition with the highest concentration of solid phase lost about 20% of its maximum viscosity value after 40 days in a closed vial. The addition of colloidal shear thickening fluids to para-aramid woven fabric (Twaron® CT709) showed enhanced ballistic penetration resistance of the elaborated system for Parabellum 9mm bullet.

Keywords: shear, thickening, fluid, armour, rheology, para-aramid composites

INTRODUCTION

Over the centuries, safety has been one of the most desirable human feelings. People have always tried to cover their bodies with a uniform to protect themselves against various types of injuries during unsafe situations [1, 2]. Nowadays, these kinds of uniforms are called body armours, and usually they are made of high-strength ballistic fabrics. Recently, one of the most widely discussed ways of enhancing the ballistic resistance of textile armours is their impregnation with a shear thickening fluid (STF) [3]. STF is a rheologically stable non-Newtonian fluid, the viscosity of which increases with a growing shear rate [4]. The shear thickening phenomenon can be explained by a few theories such as clustering theory [5], Order - Disorder Transition (ODT) [6] and flocculation theory [7]. The shear thickening behaviour of fluids has drawn substantial scientific attention due to its potential applications in liquid armour [8, 9]. Statistics state that on a battle field, 16% of fatal and 70% of minor wounds result from injuries in the neck and extremities. The application of STF enables the fabrication of flexible body armour, including sleeves and collars. STF turns into a solid body under the impact of a knife, spike or bullet, protecting in this way those parts of the body.
In this study, various shear thickening fluids were synthesized. The dependence of their viscosity on the shear rate and time stability were measured and discussed. Ballistic penetration tests of paraaramid woven fabric impregnated with STF were performed.

EXPERIMENTAL PROCEDURE

Materials

14 nm fumed silica (FS) was utilized for the investigations. The characteristic properties of the silica used in this experiment are shown in Table 1.

TABLE 1. Characteristic properties of fumed silica used in this study

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Average grain size [nm]</th>
<th>Specific surface BET [m² g⁻¹]</th>
<th>Material form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Aldrich®</td>
<td>14</td>
<td>200 ±25</td>
<td>Powder</td>
</tr>
</tbody>
</table>

The powder was dispersed in different concentrations in various organic media such as poly(propylene) glycol with different average molecular weights 400, 425, 725 (PPG400, PPG425, PPG725) and poly(ethylene)oxide with a molecular weight of 300 (PEO 300). The formulas and features of the inorganic media used in these studies are collected in Table 2.

TABLE 2. Characteristics of dispersing media

<table>
<thead>
<tr>
<th>Organic liquid</th>
<th>Manufacturer</th>
<th>Density [g cm⁻³]</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(propylene) glycol Mn=400</td>
<td>Sigma Aldrich®</td>
<td>1.001</td>
<td></td>
</tr>
<tr>
<td>Poly(propylene) glycol Mn=425</td>
<td>Sigma Aldrich®</td>
<td>1.004</td>
<td></td>
</tr>
<tr>
<td>Poly(propylene) glycol Mn=725</td>
<td>Sigma Aldrich®</td>
<td>1.007</td>
<td></td>
</tr>
<tr>
<td>Poly(ethylene) oxide Mn=300</td>
<td>Merck®</td>
<td>1.13</td>
<td></td>
</tr>
</tbody>
</table>

For fabrication of the impregnates with the rheological fluid, the woven fabric Twaron® CT 709 (surface mass of 200 ± 5 gm⁻², Teijin) was used.

Method

Fumed silica was mixed in appropriate concentrations with the dispersing media. Rheological studies were performed using an ARES rheometer, equipped with two parallel plates, with a gap between them of 0.3 mm. All the viscosity measurements were taken at 25°C.

The impregnation method of the fabric with the STF consisted of the following stages:

- the textile was cut into square pieces of 100 x 100 mm single layers of the fabric were either covered with the STF using a coater or single layers were immersed in the STF and its excess was removed,
- the samples were sealed in pouches made of a polyethylene foil.

The composite structures with the STF for ballistic tests were in two forms:

1. A various number of fabric layers impregnated with the STF were closed inside a pouch made of a polyethylene foil.
2. Layers of the fabric were separated by pouches filled with 50 g of rheological fluid.

The ballistic tests were performed according to procedure No. PBB-01:1996 "Ballistic Test". The fabrication method of the composite ballistic structures is the subject of a patent application.

RESULTS AND DISCUSSION

The dependence of the viscosity on the shear rate for the suspensions composed with different concentrations of fumed silica dispersed in poly(propylene)glycol, with an average molecular weight of 400 are shown in Figure 1. One can clearly see that the increasing volume fraction of the solid phase results in a greater dilatancy effect. We can obtain higher viscosity values at lower shear rates.

For fabrication of the impregnates with the rheological fluid, the woven fabric Twaron® CT 709 (surface mass of 200 ± 5 gm⁻², Teijin) was used.

The rheological behaviour of fumed silica dispersed in the poly(propylene) glycol differing in average molecular weight is shown in Figure 2. The higher molecular weight of the oligomer provides higher viscosity values, but obtained at lower shear rates.

The dependencies shown in Figures 1 and 2 indicate that the change of volume fraction of the FS and molecular weight of the oligomer enables tailoring of the STF properties. This information is especially signifi-
Shear thickening fluids based on nanosized silica suspensions for advanced body armour

The best shear thickening properties are shown by the composition presented in Figure 4. The fluid which was made of a 24.5% volume fraction of fumed silica 14 nm, dispersed in poly(ethylene) oxide 300, has a critical shear rate value of about 30 s$^{-1}$. The highest viscosity value is 900 Pa s obtained at a 70 s$^{-1}$ shear rate. This fluid was used in the ballistic penetration test. The results of this test are shown in Table 3.

Table 3. Results of ballistic penetration test

<table>
<thead>
<tr>
<th>Construction</th>
<th>Mass [g/m2]</th>
<th>Mass of used liquid [g]</th>
<th>Deformation depth [mm]</th>
<th>Penetration</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 clean layers</td>
<td>2810</td>
<td>-</td>
<td>22</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>16 layers impregnated with STF</td>
<td>3900</td>
<td>10</td>
<td>24</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>10 clean layers STF in PE bag</td>
<td>7800</td>
<td>50</td>
<td>16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>4 layers impregnated with STF</td>
<td>7800</td>
<td>71</td>
<td>28</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Various types of ballistic structures were made. Initially, 16 clean layers of the para-aramid woven fabrics Twaron® CT 709, were shoot with a 9 mm gun. There was no penetration of the layers, although the deformation depth was 22 mm.

The same structure, impregnated with 10 g of the STF, appeared to be bullet-proof as well, but the deformation depth was 24 mm. However, using 50 g of the STF closed in a polyethylene bag slightly enhanced the ballistic penetration resistance. The deformation depth was about 30% lower for the same number of Twaron® layers used.

The 4 layers of para-aramid woven fabrics impregnated with 71 g of the STF were penetrated by the gun projectile. It is possible, that the shear thickening pro-
Properties are weakened when the Twaron® layers are impregnated with the fluid, instead of applying it in polyethylene bags. When the fluid is placed in the PE bags, the fumed silica, dispersed in the oligomer is able to form chains which are responsible for increasing the viscosity. The impregnated fabrics could hinder the shear thickening properties of the fluid used for impregnation.

The best performance was shown by the structure composed of 16 layers of the fabric separated by a polyethylene bag filled with 50 g of the STF. The specimen was not penetrated and the deformation depth was reduced to 16 mm.

CONCLUSIONS

The studies revealed that the fumed silica, dispersed in polypropylene glycol, or polyethylene oxide, demonstrates shear thickening properties. The material composed of the FS and PEO300 possessed the best combination of properties (high viscosity obtained at high shear rate). The change of volume fraction of the FS and variation of the molecular weight of the oligomer enables tailoring of the STF properties.

The STF composed of PPG400 and FS showed good time stability.

The preliminary variants of flexible body armor systems containing STF were designed. The results of the ballistic tests show that application of the STF closed in a polyethylene bag and placed among a series of fabric layers, results in a reduction of the deformation depth by about 30%.

Acknowledgement

The Project "Smart passive body armour with application of rheological and magnetorheological fluids" is co-financed by the European Union, within European Regional Development Fund and Polish Government, within the Innovative Economy Programme, priority 1, activity 1.3, subactivity 1.3.1, agreement with the Minister of Science and Higher Education No. UDA-POIG.01.03.01-00-060/08-00, 25.02.2009 y.

REFERENCES