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EFFECTIVE CONDUCTIVITY OF PARTICLE-REINFORCED COMPOSITES  

WITH CRACKS AT PARTICLE-MATRIX INTERFACE 

In the present paper, a new approximate analytical formula for the effective conductivity of 2D dilute composites with po-

orly conducting circular inclusions and cracks on the interface between the inclusions and the matrix is established. This for-

mula is proved by Maxwell's approach and Keller's identity using advanced complex analysis. The obtained formula is used to 

determine the effective thermal conductivity of a composite material being an aluminum matrix based on Al-Mg-Si alloy rein-

forced with Al2O3 particles with the average size of about 25 microns and a volume fracture of 20%. The computer simula-

tions results are presented in  tables and illustrated by figures. It follows from the derived formulas that cracks reduce the 

effective heat conductivity about 9% with respect to the material without cracks. 

Keywords: effective conductivity, particle-reinforced composite, cracks 

EFEKTYWNA PRZEWODNOŚĆ KOMPOZYTÓW WZMOCNIONYCH CZĄSTKAMI Z UWZGLĘDNIENIEM 
SZCZELIN NA GRANICY CZĄSTKA-OSNOWA  

Przedstawiono wzór na efektywną przewodność cieplną kompozytu wzmocnionego kołowymi cząstkami o niskim współ-

czynniku przewodności cieplnej, wyznaczoną z uwzględnieniem szczelin na granicy pomiędzy wtrąceniem a osnową. Wzór był 

wyprowadzony z wykorzystaniem aproksymacji Maxwella, zaawansowanej analizy zespolonej oraz tożsamości Kellera. Opra-

cowany dwuwymiarowy model oraz wzór  zastosowano do teoretycznego wyznaczenia efektywnej przewodności cieplnej kom-

pozytu o osnowie stopu Al-Mg-Si wzmocnionego cząstkami Al2O3 o udziale objętościowym wynoszącym 20% i średniej wielko-

ści na poziomie 25. Kompozyt został poddany ściskaniu osiowemu, w wyniku którego w jego strukturze pojawił się szereg 

pęknięć, szczelin. Z analizy obrazu materiału po ściskaniu uzyskano dane niezbędne do dalszych obliczeń: numer cząstki, 

udział powierzchniowy cząstki, rozpiętość kąta (w stopniach). Wykonano obliczenia efektywnej przewodności według wypro-

wadzonego wzoru dla przypadków rzeczywistego oraz modelowych. Z analizy wyników obliczeń efektywnej przewodności 

cieplnej kompozytu Al-Mg-Si/Al2O3 wynika, że obecność szczelin w badanym materiale kompozytowym obniża jego właściwo-

ści przewodzenia ciepła około 9% w stosunku do materiału bez pęknięć. Dodatkowe symulacje pokazują znaczący wpływ pęk-

nięć na właściwości przewodzenia ciepła. W granicznym przypadku dodania szczelin o rozpiętości 90o w Modelu 6 obniża je 

do poziomu 85% materiału bez pęknięć. Otrzymane wyniki pokazują dynamiczne zmiany efektywnych właściwości kompozy-

tu następujące w wyniku zwiększenia kąta rozpiętości szczelin/zwiększenia ich liczby. Uzyskany wzór może być stosowany we 

wszystkich dziedzinach inżynierii materiałowej, związanej z określaniem efektywnych właściwości cieplnych, elektrycznych 

etc. materiałów kompozytowych z uwzględnieniem pęknięć, pojawiających się na granicach fazy wzmacniającej. 

Słowa kluczowe: efektywna przewodność, kompozyty wzmocnione cząstkami, szczeliny  

INTRODUCTION  

The extensive development of high-tech industries 

(automotive, aerospace, etc.) sets very high demands  

on the choice of engineering materials. The use of tradi-

tional materials has limited possibilities, hence, there is 

a need to look for innovative materials including com-

posites, hybrid composites, metamaterials, smart mate-

rials, etc. [1-6]. 

The above mentioned factors are the driving force in 

promoting research in the field of composite materials, 

both theoretical [7-9] and experimental [10-13]. 

Experimental work also stimulates the development 

of theoretical investigation based on mathematical 

models in order to predict the effective properties of 

composite materials at the design stage [14-16]. The 

well-known historical formulas and models [17-19] are 

still being applied by engineers for preliminary esti-

mates of  composite material properties. However, their 

applications are limited by dilute and regular compos-

ites [20] without cracks/porous/voids etc. [21]. The 

latter issue plays a key role in assessing the material 

properties [20, 22]. Damage in the process of manufac-
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turing [23-25], joining [26, 27], modification [28] and 

material exploitation have a significant influence on the 

effective properties of material and as a consequence, 

on the possibilities of their use. The arising material 

defects considerably impact the effective properties of 

materials, which has been proven by numerous experi-

mental results [11, 22, 29] as well as by theoretical cal-

culations based on standard equations [30-32]. The 

results obtained by such methods do not present  a full 

picture and they require further investigation, especially 

in the area of advanced models developed in [33, 34].  

In the majority of  studies concerning the effective 

properties of composites with cracks numerical simula-

tions or statistical methods have been applied [11,  

20, 21]. In addition, numerous among the above men-

tioned studies  were based on models with a uniform 

imperfect interface instead of cracks. In recent years, 

symbolic computations by means of Mathematica and 

Maple have been applied to this problem. An analytical 

formula for the effective conductivity of a two-

dimensional composite with circular inclusions and 

cracks that arose on the surface between the inclusions 

and the matrix was presented for the first time in [35]. 

This approach yields the effective thermal conductivity 

of the Al-Mg-Si/Al2O3/20p composite including  

cracks. 

MAXWELL APPROACH 

Let us consider the matrix-inclusion type composite 

with perfect interfacial bonds between the inclusions 

and the surrounding matrix. Let inclusion phase �� be  

a disk of radius �� with the center at the origin. Let  � denote the conductivity of the inclusions and the con-
ductivity of the matrix domain �� be normalized to 

unity. Introduce complex variables � = � + �	�, �� =

−1. Then, the thermal conductivity can be represented 

by the form 

 �	�, �
 ≡ �	�
 = � 1										for	|�| > ��,

		�										for	|�| < ��.

  (1) 

Temperature distribution ��(�) ≡ ��(�, �) in �� and �(�) ≡ �(�,�) in �� satisfies the Laplace equation 

			∇���	�, �
 = 0,						�,�
 ∈ ��,				∇
��	�, �
 = 0, 

 	�,�
 ∈ �� (2) 

And asymptotic conditions at infinity 

 �	�,�
~�,   when |	�,�
| → ∞. (3) 

The perfect contact condition between the inclusion 

and matrix takes the form [36, 37] 

 � = �� ,								��
��

= � ���

��
   on   |�| = ��, (4) 

where 
�

��
 means a normal derivative on|�| = ��. 

The harmonic functions can be expressed in terms of 

the complex potentials 

 �	�
 = ��Φ	�
,					��	�
 =
�

	
�
��Φ�	�
. (5) 

Here, Φ�	�
 is analytic in |�| < �� and Φ	�
 is ana-
lytic in|�| > �� except at infinity, where Φ	�
~�. 

Problem (4) can be written as the ℝ	- linear problem 

for complex potentials in the following form 

 Φ	�
 = Φ�	�
 − �Φ�	�
��������  on |�| = ��,  (6) 

where � =
	��

	
�
 is the contrast parameter. The	ℝ - linear 

problem has the following solution [36] 

 Φ	�
 = � + � − ��̅ − ���
�


,					Φ�	�
 = � + �,  (7) 

where c is an arbitrary constant. 

Suppose that N small non-overlapping disks are lo-

cated inside a large disk |�| < ��. Let the conductivity 

of the large disk be equal to � = ��. 

The coefficient of −��� of a complex potential is 

called the dipole moment of the potential [38]. 

Hence, the dipole moment of Φ	�
 is equal to ����
�, 

where �� is the contrast parameter given by the formula 

 	�� =
	���

	�
�
.  (8) 

For perfect conductors � = 1, hence the dipole mo-

ment of each perfectly conducting small disk is equal to 

���. The sum of the dipole moments of the small disks is 

equal to ����. We set the sum of the dipole moments of 

the small disks equal to the total dipole moment of the 

homogenized material 

 ����
� = 	�����. (9) 

Let us recall, Clausius-Mossotti's classic formula for 

effective conductivity, given by 

 �� ≈
�
��

����
. (10) 

Using a formula (8), (9) and (10) with � = 1, we 
conclude that for a sufficiently large number of small 

non-overlapping disks N, concentration �	can be  

approximated by �	��/��
�. The theoretical back-
ground of the methods and its validity were discussed in 

[39, 40]. 

Following the previous section, we will extend 

Maxwell's approach when different parts of the inter-

face combine ideal contact and isolation. Suppose that 

N small disks are located inside large disk |�| < ��, 

according to the above assumptions. The dipole mo-

ment of a large disk of Φ	�
 is equal to 	����
�. 

Now we apply the Maxwell approach to small disks 

�� 		� = 1,2, … ,�
 of radius �� embedded in the ma-

trix. Let �� denote the dipole moment of complex po-

tential �	�
 for a small disk. It is equal to coefficient 

�� of −��� in the Laurent expansion. The total dipole 
moment becomes 
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 	����
� = ∑ ��.�

���    (11) 

Let all N inclusions be divided into n representative 

classes. Then, (11) becomes 

 	����
� = ∑ ���� ,

�
���    (12) 

where n stands for the number of classes and �� for the 
frequency of the i-th class. 

EFFECTIVE CONDUCTIVITY 

In the present paper, a new approximate analytical 

formula for the effective conductivity of 2D dilute 

composites with poorly conducting circular inclusions 

and cracks on the interface between the inclusions and 

the matrix is deduced. 

First, we describe a formula obtained in [35], where 

perfect conductors of conductivity �� were embedded in 

a matrix of conductivity	� ≪ ��. On the boundary of an 
inclusion, the size of insulating crack �	 was deter-
mined by the central angle which spans the boundary 

fracture. On the remaining part of the interface, the 

perfect contact conditions were given, i.e. the continuity 

of the temperature and of the normal heat fluxes from 

both sides of the interface (see Fig. 1). 

 

 
Fig. 1. Circular inclusions with interfacial fracture L' of  angle length � 

Rys. 1. Wtrącenie kołowe ze szczeliną na brzegu L' o wymiarze kąto-

wym � mierzonym w radianach 

It was assumed that all the inclusions were randomly 

located in the matrix. Let k denote the number of inclu-

sions. The corresponding spanning angles �� have an 

angle orientation. It was assumed that these orientations 

were uniformly distributed in the segment 	0.2�
. 
Therefore, the considered composites on the macroscale 

were isotropic and described by scalar effective conduc-

tivity ��	�. It was calculated by the following equation: 

 	��	� = � �
�〈���
�

�
〉

���〈���
�

�
〉
.  (13) 

Here, 〈� !�

�
〉 means the statistical averaged value of 

the cosines of the spanning angles and � stands for the 
concentration of inclusions. The formula was proved 

for dilute composites in limit case �� → ∞ by means of 

Maxwell's approach [36]. 

The case that will be considered below is geometri-

cally identical to the previous one, with the exception of 

the relation between conductivity of inclusions # and 
matrix conductivity #� which in the present case holds 
as #� ≫ #. The latter condition is opposite to the case 

discussed in [35], hence direct application of formula 

(13) will be incorrect.  

Keller's identity [40] takes place for 2D composites 

when the constitutes are replaced by each other 

 	��� �� = ���.  (14) 

Here, 	���  denotes the effective conductivity of com-

posites corresponding to [35] when the conductivity of 

the inclusions is much greater than the conductivity of 

the matrix, i.e., �� ≫ �. 
It is impossible to directly apply Keller's identity be-

cause it was deduced under perfect contact conditions 

between the composite components/phases. Now, we 

have to take into account the insulating cracks on the 

inclusion boundaries. The main fact used by Keller [40] 

was the orthogonality of the temperature level lines and 

the flux streamlines. It was also noted that replacing 

conductivity � by resistivity ��� is equivalent to replac-
ing by each other the materials occupying the  inclu-

sions and matrix domains. A similar interpretation takes 

place in complex analysis when the level lines of the 

real and imaginary parts of the analytic functions are 

orthogonal. It worth adding that the real and imaginary 

parts of the analytic functions satisfy Laplace's equation 

governing 2D steady heat conduction [36]. Therefore, 

in the framework of dual formalism, insulating cracks 

have to be replaced by perfect line conductors. There-

fore, Keller's identity (14) can be extended to 2D com-

posites when the original composite contains cracks and 

the dual composite contains line perfect conductors 

instead of cracks. 

Consider the following conductivity scales ������ ≫

≫ �� ≫ � in a composite with high conducting lines of 

conductivity ������ and with the high ratio 	�	  of matrix 

to inclusion conductivities. It follows from (13) and 

(14) that the effective conductivity of the considered 

composite holds   

 	��	� = �� �
�〈���
��

�
〉

���〈���
��

�
〉
,  (15) 

where ��stands for the spanning angle of the perfectly 

conducting lines on the boundary of inclusions $�.	The 
remaining part of the interface denoted by L has a span-

ning angle of ideal contact conditions between the in-

clusions and matrix � = 2� − ��(see Fig. 1). This for-

mula is deduced under the condition that conductivity 

������ of the part of boundary L' tends to infinity. Sub-
stituting �� = 2� into (15) yields �
�

���
 instead of 1 in the 

case ��~������. It can be noted that �� = �� when �� = �. This enables us to rescale the conductivity via 
angle ��and instead of (15) to take   
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 	�� � ��
���〈���

��

�
〉

�
�〈���
��

�
〉
,

to describe case ��~�����.	 Such rescaling means linear 
correction of the conductivity along L'

Let T denote the temperature distribution in the 

composite. Then, the normal fluxes inside and outside 

the inclusion coincide 

 	�
���

�
� ��

���

�
     on   

Because of inequality �� ≫ � in the limit case (
becomes 

 
���

�
� 0   on   L.  

This means insulation along the considered part of 

the boundary, hence, 	 yields the spanning angle of 

insulation. Substituting 	� � 2� � 	 
the following formula  

 �� � ��
���〈��

�

�
〉

�
�〈��
�

�
〉
. 

Following Section Maxwell approach

dipole approach and extend the latter formula to 

polydispersed inclusions  

 �� � ��
��∑ ��

�
��	 〈��

�

�

�
∑ ��
�
��	

〈��
�

�

where n is the number of inclusions phases, 

centration of the i-th component, 	� the spanning angle 

of insulation of the i-th component. 

CALCULATIONS 

In this section the theory described above will 

be used to determine the effective properties of the 

Al-Mg-Si/Al2O3composite with a reinforcing phase 

concentration of about 20% (Fig. 2). 

The composite was subjected to axial compression 

in which a number of cracks and gaps arose in its stru

ture. We obtain the data necessary for further calcul

tions - the number of particles, the particle fraction a

eas, the crack spanning angles (in degrees) from the 

image analysis of Figure 3. The crack formation in the 

composite structure as a result of the plastic deform

tion process can be considered as a dynamic process of 

the external load changing in time. Therefore, in order 

to obtain the necessary data to estimate the influence of 

crack propagation on the effective properties of the 

composites, six additional models are built on the basis 

of the actual image of the microstructure (Fig. 3). Mo

els 1-3 are created as a result of the linear reduction of 

the angle of the slit gap to the levels of 1/3, 1/2 and 2/3 

of the real data, respectively. In models 4

introduced artificially (they are not presented in the 

microstructure image) with a span of 30, 60, 90, respe

tively. 
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〉

〉
,  (16) 

Such rescaling means linear 

L'. 

denote the temperature distribution in the 

composite. Then, the normal fluxes inside and outside 

on   L. (17) 

in the limit case (17) 

 (18) 

This means insulation along the considered part of 

yields the spanning angle of 

 into (16) implies 

〉

〉
 (19) 

Maxwell approach, we use the 

dipole approach and extend the latter formula to 

��
�
〉

��

�
〉
,   (20) 

is the number of inclusions phases, � the con-

the spanning angle 

In this section the theory described above will  

be used to determine the effective properties of the  

composite with a reinforcing phase 

The composite was subjected to axial compression 

of cracks and gaps arose in its struc-

We obtain the data necessary for further calcula-

the number of particles, the particle fraction ar-

eas, the crack spanning angles (in degrees) from the 

image analysis of Figure 3. The crack formation in the 

composite structure as a result of the plastic deforma-

tion process can be considered as a dynamic process of 

the external load changing in time. Therefore, in order 

to obtain the necessary data to estimate the influence of 

e properties of the 

composites, six additional models are built on the basis 

of the actual image of the microstructure (Fig. 3). Mod-

3 are created as a result of the linear reduction of 

the angle of the slit gap to the levels of 1/3, 1/2 and 2/3 

e real data, respectively. In models 4-6, the slits are 

introduced artificially (they are not presented in the 

microstructure image) with a span of 30, 60, 90, respec-

Fig. 2. Initial microstructure of Al-Mg

EDS analysis results of its major structural constituent Al

Rys. 2. Obraz mikrostruktury kompozytu Al

EDS cząstek wzmocnienia 

Fig. 3. Microstructure of Al-Mg-Si/Al

deformation with visible cracks 

Rys. 3. Mikrostruktura kompozytu Al-

z widocznymi szczelinami 

The sets of real and model data (description in fu

ther part of this paper) are shown in Table 1.

The data from Figure 3 are in the column entitled 

REAL, in the next ones the data is changed as follows:

- Model 1 - the crack spanning angles are reduced to 

the level 
�

�
∙ �����	�����; 

- Model 2 - as above to the level 

- Model 3 - as above to the level 

- Model 4 - in relation to the 

changed by adding cracks with a span 

30
o
 at the particle-matrix boundary where no cracks 

occurred before; 

- Model 5 - as above with the angle of 60

- Model 6 - as above with the angle of 90

Calculations were made for 

the considered composite without cracks using equation 

(20) for the real cases and for the models mentioned 

 
Mg-Si/Al2O3/20p composite with of 

sis results of its major structural constituent Al2O3 

rostruktury kompozytu Al-Mg-Si/Al2O3/20p z analizą 

 
Al2O3/20p composite after plastic 

deformation with visible cracks  

-Mg-Si/Al2O3/20p  po deformacji  

The sets of real and model data (description in fur-

ther part of this paper) are shown in Table 1. 

The data from Figure 3 are in the column entitled 

es the data is changed as follows: 

crack spanning angles are reduced to 

�

as above to the level 
�

�
∙ �����	�����; 

as above to the level 
�

�
∙ �����	�����; 

in relation to the REAL column, the data is 

changed by adding cracks with a span angle equal to 

matrix boundary where no cracks 

as above with the angle of 60
o
; 

as above with the angle of 90
o
. 

Calculations were made for effective conductivity of 

the considered composite without cracks using equation 

) for the real cases and for the models mentioned 
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above. For the purpose of  comparison of the obtained 

results, the effective conductivity of the considered 

composite without cracks is calculated by the Clausius- 

-Mossotti (Maxwell) model  

 	�� ≈ �� �
��

����
.	 (21) 

The obtained results for the calculated heat effective 

conductivity are shown in Table 2. 

 
TABLE 1. Sets of real and model data  for further calculations 

on basis of Figure 3 

TABELA 1. Zestawienie modelowych i rzeczywistych danych 

do obliczeń na podstawie rysunku 3 

N 

 

Fraction 

area 

Crack spanning angle (in degrees) 

Real Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Model 

6 

1 0.007 46.69 15.56 23.35 31.13 46.69 46.69 46.69 

2 0.009 - - - - 30.00 60.00 90.00 

3 0.004 110.25 36.75 55.13 73.50 110.25 110.25 110.25 

4 0.001 111.45 37.15 55.73 74.30 111.45 111.45 111.45 

5 0.010 41.57 13.86 20.79 27.71 41.57 41.57 41.57 

6 0.025 34.91 11.64 17.46 23.27 34.91 34.91 34.91 

7 0.025 - - - - 30.00 60.00 90.00 

8 0.009 45.66 15.22 22.83 30.44 45.66 45.66 45.66 

9 0.015 52.89 17.63 26.45 35.26 52.89 52.89 52.89 

10 0.012 97.08 32.36 48.54 64.72 97.08 97.08 97.08 

11 0.007 117.71 39.24 58.86 78.47 117.71 117.71 117.71 

12 0.014 145.04 48.35 72.52 96.69 145.04 145.04 145.04 

13 0.001 79.02 26.34 39.51 52.68 79.02 79.02 79.02 

14 0.002 56.93 18.98 28.47 37.95 56,.93 56.93 56.93 

15 0.005 108.78 36.26 54.39 72.52 108.78 108.78 108.78 

16 0.007 53.40 17.80 26.70 35.60 53.40 53.40 53.40 

17 0.053 - - - - 30.00 60.00 90.00 

18 0.002 - - - - 30.00 60.00 90.00 

19 0.011 123.42 41.14 61.71 82.28 123.42 123.42 123.42 

20 0.007 - - - - 30.00 60.00 90.00 

21 0.002 - - - - 30.00 60.00 90.00 

22 0.018 45.18 15.06 22.59 30.12 45.18 45.18 45.18 

 

TABLE 2. Calculated effective conductivity λ 

TABELA 2. Zestawienie obliczonych wartości efektywnej 

przewodności λ 

Model �  

Real 0.913 

Model 1 0.969 

Model 2 0.954 

Model 3 0,.940 

Model 4 0.889 

Model 5 0.867 

Model 6 0.845 

 

The obtained results are displayed in a bar chart in 

Figure 4 where column 0 on the OX axis corresponds to 

the effective conductivity normalized to unity of the 

composite without cracks. 

 

Fig. 4. Calculated effective conductivity� 

Rys. 4. Zestawienie obliczonych wartości efektywnej przewodności � 

The parts of the column under the OX axis 
correspond to the losses of the effective heat 
conductivity because of the presence of cracks. The 
results are predictable - the presence of cracks 
decreases the value of �. The decrease of � holds 8.7% 
for the real composite material with cracks calculated 
with formula (20). The decrease in the value of �	and 
the angle of the cracks span indicates a non-linear 
relation between the calculations and the performed 
changes. 

CONCLUSIONS  

Formula (20) applied to the Al-Mg-Si/Al2O3 com-
posite demonstrates that the presence of cracks in the 
examined composite material decreases its ability to 
conduct heat by 8.7% in relation to the material without 
cracks. Furthermore, the simulations show a significant 
influence of the cracks  on the heat conduction, and in 
the boundary case, adding cracks with the spread of 90

o
 

in Model 6 leads to a decrease of about 16% in relation 
to the material without the cracks. 

The dynamics changes in effective properties that 
occur as a result of the defects increase in the composite 
are observed. It should be mentioned that the received 
formula can be adapted for all fields of materials engi-
neering associated with determining the effective heat, 
electric etc. properties of composite materials with cracks 
appearing on boundaries of the reinforcing phase. 
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