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MODELLING OF LINEAR ELASTICITY AND VISCOELASTICITY  
OF THERMOSETS AND UNIDIRECTIONAL GLASS FIBRE-REINFORCED 

THERMOSET-MATRIX COMPOSITES – PART 2: HOMOGENIZATION  
AND NUMERICAL ANALYSIS 

The study continues the advanced analytical modelling of the linear elasticity and viscoelasticity of thermosets and unidi-
rectional glass fibre-reinforced thermoset-matrix (UFRT) composites. The thermosets are isotropic materials with viscoelastic 
shear strains and elastic bulk strains, and the fibres are isotropic and elastic. The modified homogenization theory for UFRT 
composites, based on the selected tasks of the linear theory of elasticity, is developed. The modifications include a volumetrically 
equivalent cylindrical representative volume cell, solutions determined for an isotropic fibre based on the solutions for a mono-
tropic (transversely isotropic) fibre, and certain modifications in the third task of the theory of elasticity. The viscoelastic con-
stants of the thermoset are derived analytically and validated by fitting of the simulation and experimental shear strains on  
a logarithmic time scale in the unidirectional tension creep test. The viscoelastic constants of the UFRT composite are derived 
analytically and validated by fitting of the storage compliances corresponding to the new viscoelastic model and one obtained 
from the viscoelastic-elastic correspondence principle. The tension creep experiment is performed on the selected structural 
unsaturated polyester resin. Identification and validation are carried out for that thermoset and the corresponding UFRT com-
posite with long E-glass fibres. All the modelling hypotheses are confirmed. 

Keywords: thermoset, unidirectional glass fibre-reinforced thermoset-matrix composite, rheological modelling, experimental 
tests, numerical analysis 

 
 

INTRODUCTION 
The paper is a continuation of Part 1 (Ref. [1]) on the 

elastic and viscoelastic modelling of thermosets and uni-
directional long glass fibre-reinforced thermoset-matrix 
(UFRT) composites. Part 1 consisted of the following 
sections: an introduction including the state of the art, re-
search objectives, assumptions, modelling of the linear 
elasticity and viscoelasticity of thermosets, and model-
ling of the linear elasticity and viscoelasticity of UFRT 
composites. This paper (Part 2) includes the following 
sections: the modified homogenization of UFRT compo-
sites, a description of new numerical algorithms corre-
sponding to the analytical solutions presented in Part 1, 
a description and analysis of the experimental and nu-
merical tests on the representative materials (identifica-
tion and validation). 

New rheological models (coded H-R/H) for thermo-
sets and UFRT composites, described by the smallest 
possible number of the material constants, were devel-
oped by Klasztorny and Nycz [1]. The generic function 
for viscoelastic shear/quasi-shear stresses in thermosets 
and UFRT composites is assumed as Mittag-Leffler frac-
tional exponential function in an integral form. The  
H-R/H model of the thermoset is described by two elastic 

and three viscoelastic constants. The H-R/H model of the 
homogenized UFRT composite is described by five elas-
tic and five viscoelastic constants. 

The homogenization of a UFRT composite with 
monotropic fibres was formulated by Wilczynski and 
Lewinski [2, 3] and next developed by Klasztorny et al. 
[4]. The modified homogenization theory for UFRT 
composites, presented in this study includes the follow-
ing modifications: a volumetrically equivalent cylindri-
cal representative volume cell, solutions determined for 
an isotropic fibre based on the solutions for a monotropic 
(transversely isotropic) fibre, and certain modifications 
in the third task of the theory of elasticity.  

The viscoelastic constants of a thermoset, relative to 
the H-R/H rheological model, will be derived analyti-
cally and validated by fitting of the simulation and  
experimental shear strains vs. time (in a logarithmic 
scale) corresponding to the unidirectional tension creep 
test. The viscoelastic constants of a UFRT composite 
will be derived analytically and validated by fitting of the 
storage compliances corresponding to the H-R/H visco-
elastic model and one obtained from the viscoelastic-
elastic correspondence principle (VECP). The tension 
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creep experiment was performed on the selected struc-
tural unsaturated polyester resin. The identification and 
validation were carried out for that thermoset and the 
corresponding UFRT composite with long E-glass fibres. 
Selected final formulas determined in Ref. [1], used in 
this paper, are summarized in Appendix A. 

The main research objectives are as follows: 
- to develop a modified homogenization theory for 

UFRT composites; 
- to develop an analytical algorithm in order to deter-

mine the viscoelastic constants of a UFRT compo-
site using the viscoelastic-elastic correspondence 
principle; 

- to determine the elasticity and viscoelasticity con-
stants of the exemplary thermoset, describing the  
H-R/H model at RT, on the basis of the unidirec-
tional tension creep test; 

- to determine the elastic and viscoelastic constants of 
an exemplary UFRT composite, describing the  
H-R/H model at RT, on the basis of the modified ho-
mogenization theory and the viscoelastic-elastic cor-
respondence principle. 

The following assumptions are made (Ref. [1]): 
- a new non-aging material fully relaxed after the cur-

ing and post-curing processes (free of residual 
stresses); 

- quasi-static long-term isothermal viscoelastic pro-
cesses; 

- normal conditions; 
- low levels of stresses in the thermoset matrix providing 

reversibility of the elastic and viscoelastic processes; 
- long continuous rectilinear fibres arranged unidirec-

tionally and uniformly in the matrix in a hexagonal 
scheme; 

- a cylindrical representative volume cell (RVC) 
equivalent in volume to the true hexagonal cell; 

- a linear viscoelastic isotropic thermoset described by 
the H-R/H (shear/bulk) rheological model; 

- linear elastic isotropic fibres with an identical circu-
lar cross section; 

- a linear viscoelastic monotropic composite after ho-
mogenization. 

HOMOGENIZATION OF UFRT COMPOSITES 
This Section presents a modified homogenization 

theory of a UFRT composite. The base publication is 
Ref. [4]. The modifications include: 
- determination of analytical solutions of theory of 

elasticity tasks for an isotropic fibre based on the so-
lutions for a monotropic (transversely isotropic)  
fibre; 

- use of the arithmetic mean of two results to deter-
mine compliance 𝑆𝑆s4 in the third task of the theory 
of elasticity. 

Note, a real hexagonal representative volume cell 
(RVC) is replaced with a cylindrical RVC without 
changing the value of the parameter 𝑓𝑓. 

The purpose of homogenizing (micro-modelling)  
a UFRT composite, meeting the assumptions listed in 
Ref. [1], is to determine the effective elasticity constants 
(EECs) of the equivalent homogeneous monotropic con-
tinuum, i.e. 𝐸𝐸1,𝐸𝐸2, 𝜈𝜈21, 𝜈𝜈32 ,𝐺𝐺12. These constants will be 
determined analytically on the basis of the solutions of 
selected tasks of the classic theory of elasticity concern-
ing a RVC. The EECs are expressed in terms of the elas-
tic constants of the thermoset matrix (𝐸𝐸, 𝜈𝜈), the elastic 
constants of the glass fibre (𝐸𝐸f – Young’s modulus, 𝜈𝜈f – 
Poisson’s ratio), and fibre volume fraction 𝑓𝑓. The shear 
and bulk modules for a thermoset are defined in Ref. [1], 
and for a fibre 

 𝐺𝐺f = 𝐸𝐸f 2(1 + 𝜈𝜈f)⁄   ,   𝐵𝐵f = 𝐸𝐸f 3(1− 2𝜈𝜈f)⁄  (1) 

The RVC is assumed as a cylinder composed of a cir-
cular central disk with radius 𝑎𝑎 and thickness 2ℎ and  
a ring disk with outer radius 𝑏𝑏 and thickness 2ℎ, as 
shown in Figure 1. The RVC is equivalent volumetrically 
to the real hexagonal cell, hence 𝑎𝑎 = 𝑏𝑏�𝑓𝑓. The homog-
enized RVC is a circular disk with radius 𝑏𝑏 and thickness 
2ℎ. The RVC is described in the 𝑥𝑥1𝑟𝑟𝑟𝑟 cylindrical coor-
dinate system corresponding to the 𝑥𝑥1𝑥𝑥2𝑥𝑥3 Cartesian co-
ordinate system. The RVC is a 2ℎ thick section of an in-
finitely long two-phase cylinder. 

The elastic directional compliances of a thermoset 
matrix are expressed in terms of the elastic shear/bulk 
compliances of the matrix, i.e. [1] 

 𝑆𝑆11,m = (2𝑆𝑆s + 𝑆𝑆b) 3⁄   ,   𝑆𝑆12,m = (𝑆𝑆b − 𝑆𝑆s) 3⁄   (2) 

where (see Eqns. (A.3)6-8, (A.5)4) 

𝑆𝑆11,m = 1 𝐸𝐸⁄ ,   𝑆𝑆12,m = −𝜈𝜈 𝐸𝐸⁄ ,    𝑆𝑆s = 1 2𝐺𝐺⁄ ,   𝑆𝑆b = 1 3𝐵𝐵⁄    
 (3) 

By multiplying Eqns. (2, 3) by 𝐸𝐸f, we get dimension-

less equations, i.e. 

 𝑠𝑠11 = (2𝑠𝑠s + 𝑠𝑠b) 3⁄   ,   𝑠𝑠12 = (𝑠𝑠b − 𝑠𝑠s) 3⁄  (4) 

where 

𝑠𝑠11 = 𝐸𝐸f 𝐸𝐸⁄  ,   𝑠𝑠12 = −𝜈𝜈𝐸𝐸f 𝐸𝐸⁄  ,    𝑠𝑠s = 𝐸𝐸f 2𝐺𝐺⁄   ,   𝑠𝑠b = 𝐸𝐸f 3𝐵𝐵⁄   
 (5) 

In further considerations, quantities 𝑆𝑆11,h, 𝑆𝑆22,h, 𝑆𝑆12,h, 
𝑆𝑆23,h, 𝑆𝑆s4,h, 𝑆𝑆s5,h are elements of elastic compliance ma-
trices 𝐒𝐒, {𝐒𝐒} (Ref. [1]) corresponding to the normal/shear 
strains for the homogeneous monotropic material, re-
spectively. Compliances 

 𝑆𝑆2,h = (1− 𝜈𝜈32) 𝐸𝐸2⁄   ,   𝑆𝑆s4,h = (1 + 𝜈𝜈32) 𝐸𝐸2⁄   (6) 

allow two compliances of the homogenized composite to 
be determined, i.e. 

 𝑆𝑆22,h = �𝑆𝑆2,h + 𝑆𝑆s4,h� 2⁄   ,   𝑆𝑆23,h = �𝑆𝑆2,h − 𝑆𝑆s4,h� 2⁄    (7) 
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Fig. 1. Two-phase RVC on background of real hexagonal cell 

The following designations corresponding to the 
RVC are introduced: 
𝐴𝐴,𝐵𝐵, 𝐶𝐶,𝐷𝐷 – integration constants corresponding to the 
polymer matrix, 
𝐴𝐴f,𝐵𝐵f,𝐶𝐶f – integration constants corresponding to the 
glass fibre, 
𝑢𝑢1,𝑢𝑢, 𝑣𝑣 – displacement components in cylindrical coor-
dinates, corresponding to the RVC polymer matrix,  
𝑢𝑢1f,𝑢𝑢f, 𝑣𝑣f – displacement components in cylindrical  
coordinates, corresponding to the RVC fibre, 
𝑢𝑢1c,𝑢𝑢c,𝑣𝑣c – displacement components in cylindrical  
coordinates, corresponding to the RVC homogenized 
composite, 
𝜎𝜎1,𝜎𝜎r,𝜎𝜎φ, 𝜏𝜏rφ, 𝜏𝜏1r – stress components in cylindrical  
coordinates, corresponding to the RVC polymer  matrix,  
𝜎𝜎1f,𝜎𝜎rf,𝜎𝜎φf, 𝜏𝜏rφf, 𝜏𝜏1rf – stress components in cylindrical 
coordinates, corresponding to the RVC fibre, 
𝜎𝜎1c,𝜎𝜎rc,𝜎𝜎φc,𝜏𝜏rφc, 𝜏𝜏1rc – stress components in cylindrical 
coordinates, corresponding to the RVC homogenized 
composite, 
𝜎𝜎0, 𝜏𝜏0 – maximum normal/shear stress, 
𝑝𝑝11,𝑝𝑝22,𝑝𝑝12,𝑝𝑝21,𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4,𝑝𝑝 – auxiliary coefficients 
in the analytical solutions of theory of elasticity tasks. 

The displacement and stress components in the 𝑥𝑥1𝑟𝑟𝑟𝑟 
cylindrical coordinate system are shown in Figure 2. 

 

 
Fig. 2. Displacement and stress components in 𝒙𝒙𝟏𝟏𝒓𝒓𝒓𝒓 cylindrical coordi-

nate system 

The following tasks of the classic theory of elasticity 
were chosen (Refs. [2-4]): 
1) longitudinal uniform tension in the 𝑥𝑥1 direction; 
2) axially-symmetric transverse tension in the 𝑥𝑥2𝑥𝑥3 

plane; 

3) transverse shear in the 𝑥𝑥2𝑥𝑥3 plane; 
4) longitudinal shear in the 𝑥𝑥1𝑥𝑥2 plane. 

Consider the first task illustrated in Figure 3. Accord-
ing to the true response of the UFRT composite, the lon-
gitudinal elongation of both phases 𝑢𝑢1 = const (Fig. 3a).  
It results in a normal stress distribution before homoge-
nization 𝜎𝜎1 = const, 𝜎𝜎1f = const and after homogeniza-
tion 𝜎𝜎0 = const, as shown in Figure 3b, c. 

 

 
Fig. 3. First task in homogenization theory of UFRT composite 

The general solutions in the first task have the follow-
ing form: 
- stresses and displacements in the fibre (0 ≤ 𝑟𝑟 ≤ 𝑎𝑎): 

 𝜎𝜎𝑟𝑟f = 2𝐶𝐶f  ,   𝜎𝜎𝜑𝜑f = 2𝐶𝐶f
𝑢𝑢f(𝑟𝑟) = 𝑟𝑟[2(1− 𝜈𝜈f)𝐶𝐶f − 𝜈𝜈f𝜎𝜎1f] 𝐸𝐸f⁄  ,  

 𝑢𝑢1f(𝑥𝑥1) = 𝑥𝑥1(𝜎𝜎1f − 4𝜈𝜈f𝐶𝐶f) 𝐸𝐸f⁄  (8) 

- stresses and displacements in the matrix (𝑎𝑎 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

 
𝜎𝜎𝑟𝑟(𝑟𝑟) = 𝐴𝐴 𝑟𝑟2⁄ + 2𝐶𝐶  ,   𝜎𝜎𝜑𝜑(𝑟𝑟) = −𝐴𝐴 𝑟𝑟2⁄ + 2𝐶𝐶

𝑢𝑢𝑟𝑟(𝑟𝑟) = 𝑟𝑟[−𝜈𝜈𝜎𝜎1 − (1 + 𝜈𝜈)𝐴𝐴 𝑟𝑟2⁄ + 2(1− 𝜈𝜈)𝐶𝐶] 𝐸𝐸⁄   ,   
  

 𝑢𝑢1(𝑥𝑥1) = 𝑥𝑥1(𝜎𝜎1 − 4𝜈𝜈𝐶𝐶) 𝐸𝐸⁄  (9) 

- stresses and displacements in the homogenized RVC 
(0 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

 𝜎𝜎𝑟𝑟c = 0  ,   𝜎𝜎𝜑𝜑c = 0
𝑢𝑢c(𝑟𝑟) = −𝑟𝑟𝜈𝜈21𝜎𝜎0 𝐸𝐸1⁄   ,   𝑢𝑢1c(𝑥𝑥1) = 𝑥𝑥1𝜎𝜎0 𝐸𝐸1⁄   (10) 

The boundary conditions in the stresses have the 
form: 

 𝜎𝜎1f 𝑓𝑓 + 𝜎𝜎1(1− 𝑓𝑓) = 𝜎𝜎0  ,   𝜎𝜎𝑟𝑟(𝑏𝑏) = 0  (11) 

The continuity conditions have the form 

 𝜎𝜎𝑟𝑟f(𝑎𝑎) = 𝜎𝜎𝑟𝑟(𝑎𝑎)  ,   𝑢𝑢f(𝑎𝑎) = 𝑢𝑢(𝑎𝑎)  ,   𝑢𝑢1f(ℎ) = 𝑢𝑢1(ℎ) (12) 

The compatibility conditions in the displacements 
have the form 

 𝑢𝑢(𝑏𝑏) = 𝑢𝑢c(𝑏𝑏)  ,   𝑢𝑢1(ℎ) = 𝑢𝑢1c(ℎ)   (13) 

Equations (11)-(13) form a system of 7 linear  
algebraic equations with unknowns 𝜎𝜎1f,𝜎𝜎1,𝐶𝐶f,𝐴𝐴,𝐶𝐶, 
𝑆𝑆11,h, 𝑆𝑆12,h. The results in terms of the elastic compli-
ances of the homogenized composite are as follows:  

 𝑆𝑆11,h = (𝑝𝑝2𝑠𝑠11 − 2𝑝𝑝1𝑠𝑠12) 𝑝𝑝 𝐸𝐸f⁄⁄   ,    
 𝑆𝑆12,h =  (𝑝𝑝2𝑠𝑠12 − 2𝑝𝑝1𝑠𝑠11) 𝑝𝑝 𝐸𝐸f⁄⁄   
  (14) 
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where 
𝑝𝑝1 = 𝑝𝑝22𝜈𝜈f − 𝑝𝑝12  ,   𝑝𝑝2 = 𝑝𝑝11 − 𝑝𝑝21𝜈𝜈f  , 

  𝑝𝑝 = 𝑝𝑝11𝑝𝑝22 − 𝑝𝑝12𝑝𝑝21 

𝑝𝑝11 = (1− 𝑓𝑓)(1− 𝜈𝜈f) + (1 + 𝑓𝑓)𝑠𝑠11 − (1− 𝑓𝑓)𝑠𝑠12  ,   

𝑝𝑝22 = 1 + 𝑓𝑓(𝑠𝑠11 − 1) 

𝑝𝑝12 = (1− 𝑓𝑓)𝜈𝜈f − 𝑓𝑓𝑠𝑠12  ,   𝑝𝑝21 = 2(1− 𝑓𝑓)𝜈𝜈f − 2𝑓𝑓𝑠𝑠12 

 (15) 

Consider the second task illustrated in Figure 4.  
According to the true response of the UFRT composite, 
the longitudinal contraction (negative elongation) of 
both phases 𝑢𝑢1 = const as shown in Figure 4b. It results 
in a normal stress distribution before homogenization  
𝜎𝜎1 = const, 𝜎𝜎1f = const (Fig. 4c) and after homogeni-
zation 𝜎𝜎1c = 0. 

 

 
Fig. 4. Second task in homogenization theory of UFRT composite 

The stresses and displacements in the fibre and the 
matrix are described by Eqns. (8, 9), whereas for the ho-
mogenized RVC the following formulae are obtained 
(0 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

𝜎𝜎𝑟𝑟c = 𝜎𝜎0  ,   𝜎𝜎𝜑𝜑c = 𝜎𝜎0
𝑢𝑢c(𝑟𝑟) = 𝑟𝑟(1− 𝜈𝜈32)𝜎𝜎0 𝐸𝐸2⁄   ,   𝑢𝑢1c(𝑥𝑥1) = −2𝑥𝑥1𝜈𝜈21𝜎𝜎0 𝐸𝐸1⁄   (16) 

The boundary conditions in the stresses have the 
form: 

 𝜎𝜎1f 𝑓𝑓 + 𝜎𝜎1(1− 𝑓𝑓) = 0  ,   𝜎𝜎𝑟𝑟(𝑏𝑏) = 𝜎𝜎0  (17) 

The continuity and compatibility conditions are de-
scribed by Eqns. (12, 13). Equations (12, 13, 17) form  
a system of 7 linear algebraic equations with unknowns 
𝜎𝜎1f,𝜎𝜎1,𝐶𝐶f,𝐴𝐴, 𝐶𝐶, 𝑆𝑆2,h, 𝑆𝑆12,h. The results in terms of the 
elastic compliances of the homogenized composite are as 
follows: 

 
𝑆𝑆2,h = [𝑠𝑠11 + 𝑠𝑠12 + (𝑝𝑝4𝑠𝑠12 − 2𝑝𝑝3𝑠𝑠11) 𝑝𝑝⁄ ] 𝐸𝐸f⁄
𝑆𝑆12,h = [𝑠𝑠12 + (𝑝𝑝4𝑠𝑠11 2⁄ − 𝑝𝑝3𝑠𝑠12) 𝑝𝑝⁄ ] 𝐸𝐸f⁄  (18) 

where 
𝑝𝑝3 = 𝑝𝑝22�(1− 𝜈𝜈)𝑠𝑠11 − �1− 𝜈𝜈𝑓𝑓��𝑓𝑓 + 2𝑝𝑝12(𝜈𝜈f + 𝑠𝑠12)𝑓𝑓
𝑝𝑝4 = −2𝑝𝑝11(𝜈𝜈f + 𝑠𝑠12)𝑓𝑓 − 𝑝𝑝21�(1− 𝜈𝜈)𝑠𝑠11 − �1− 𝜈𝜈𝑓𝑓��𝑓𝑓

   (19) 

Coefficients 𝑝𝑝11,𝑝𝑝22,𝑝𝑝12,𝑝𝑝21,𝑝𝑝 are defined in Eqns. 
(15)3-7. It can be shown that equations (14)2, (18)2 are 
equivalent. 

The third task is related to the RVC loaded trans-
versely on the boundary 𝑟𝑟 = 𝑏𝑏 with the following 
stresses: 

 𝜎𝜎𝑟𝑟(𝑏𝑏,𝑟𝑟) = 𝜎𝜎0 cos 2𝑟𝑟   ,   𝜏𝜏𝑟𝑟𝜑𝜑(𝑏𝑏,𝑟𝑟) = −𝜎𝜎0 sin 2𝑟𝑟  (20) 

as shown in Figure 5. According to the true response of 
the UFRT composite, this load induces a planar strain 
state (𝜀𝜀1 = 0). It results in non-uniform normal stresses 
before and after homogenization. 

The general solutions in the third task have the fol-
lowing form: 
- stresses and displacements in the fibre (0 ≤ 𝑟𝑟 ≤ 𝑎𝑎): 

 

𝜎𝜎𝑟𝑟f(𝑟𝑟) = −2𝐴𝐴f cos 2𝑟𝑟   ,   𝜎𝜎𝜑𝜑f(𝑟𝑟,𝑟𝑟) = 2(𝐴𝐴f + 6𝐵𝐵f 𝑟𝑟2) cos 2𝑟𝑟
𝜏𝜏𝑟𝑟𝜑𝜑f(𝑟𝑟,𝑟𝑟) = 2(𝐴𝐴f + 3𝐵𝐵f 𝑟𝑟2) sin 2𝑟𝑟

𝑢𝑢f(𝑟𝑟,𝑟𝑟) = −2𝑟𝑟[(1 + 𝜈𝜈f)𝐴𝐴f + 2𝜈𝜈f(1 + 𝜈𝜈f)𝐵𝐵f 𝑟𝑟2] 𝐸𝐸f⁄ ∙ cos 2𝑟𝑟
𝑣𝑣f(𝑟𝑟,𝑟𝑟) = 2𝑟𝑟�(1 + 𝜈𝜈f)𝐴𝐴f + �3 + 𝜈𝜈f − 2𝜈𝜈f2�𝐵𝐵f 𝑟𝑟2� 𝐸𝐸f⁄ ∙ sin 2𝑟𝑟

 

  (21) 

- stresses and displacements in the matrix (𝑎𝑎 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 
𝜎𝜎𝑟𝑟(𝑟𝑟,𝑟𝑟) = −2(𝐴𝐴 + 3𝐶𝐶 𝑟𝑟4⁄ + 2𝐷𝐷 𝑟𝑟2⁄ ) cos 2𝑟𝑟
𝜎𝜎𝜑𝜑(𝑟𝑟,𝑟𝑟) = 2(𝐴𝐴 + 6𝐵𝐵𝑟𝑟2 + 3𝐶𝐶 𝑟𝑟4⁄ ) cos 2𝑟𝑟

𝜏𝜏𝑟𝑟𝜑𝜑(𝑟𝑟,𝑟𝑟) = 2(𝐴𝐴 + 3𝐵𝐵𝑟𝑟2 − 3𝐶𝐶 𝑟𝑟4⁄ − 𝐷𝐷 𝑟𝑟2⁄ ) sin 2𝑟𝑟
𝑢𝑢(𝑟𝑟,𝑟𝑟) = −2𝑟𝑟(1 + 𝜈𝜈)[𝐴𝐴 + 2𝜈𝜈𝐵𝐵𝑟𝑟2 − 𝐶𝐶 𝑟𝑟4⁄ − 2(1 − 𝜈𝜈)𝐷𝐷 𝑟𝑟2⁄ ] 𝐸𝐸⁄ ∙ cos 2𝑟𝑟

𝑣𝑣(𝑟𝑟,𝑟𝑟) = 2𝑟𝑟[(1 + 𝜈𝜈)𝐴𝐴 + (3 + 𝜈𝜈 − 2𝜈𝜈2)𝐵𝐵 𝑟𝑟2 +
                                        +(1 + 𝜈𝜈) 𝐶𝐶 𝑟𝑟4⁄ − (1 − 𝜈𝜈 − 2𝜈𝜈2)𝐷𝐷 𝑟𝑟2⁄ ] 𝐸𝐸⁄ ∙ sin 2𝑟𝑟

 

  (22) 

- stresses and displacements in the homogenized RVC 
(0 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

 𝜎𝜎𝑟𝑟c(𝑟𝑟) = 𝜎𝜎0 cos 2𝑟𝑟   ,   𝜎𝜎𝜑𝜑c(𝑟𝑟) = −𝜎𝜎0 cos 2𝑟𝑟  ,   

 
 𝜏𝜏𝑟𝑟𝜑𝜑c(𝑟𝑟) = −𝜎𝜎0 sin 2𝑟𝑟

𝑢𝑢c(𝑟𝑟,𝑟𝑟) = 𝑟𝑟(1 + 𝜈𝜈32)𝜎𝜎0 𝐸𝐸2⁄ ∙ cos 2𝑟𝑟
𝑣𝑣c(𝑟𝑟,𝑟𝑟) = −𝑟𝑟(1 + 𝜈𝜈32)𝜎𝜎0 𝐸𝐸2⁄ ∙ sin 2𝑟𝑟

  (23) 

 

 
Fig. 5. Third task in homogenization theory of UFRT composite 

The boundary conditions in the stresses are described 
by Eqns. (20). The continuity conditions have the form: 

 𝜎𝜎𝑟𝑟f(𝑎𝑎,𝑟𝑟) = 𝜎𝜎𝑟𝑟(𝑎𝑎,𝑟𝑟)  ,   𝜏𝜏𝑟𝑟𝜑𝜑f(𝑎𝑎,𝑟𝑟) = 𝜏𝜏𝑟𝑟𝜑𝜑(𝑎𝑎,𝑟𝑟)
𝑢𝑢f(𝑎𝑎,𝑟𝑟) = 𝑢𝑢(𝑎𝑎,𝑟𝑟)  ,   𝑣𝑣f(𝑎𝑎,𝑟𝑟) = 𝑣𝑣(𝑎𝑎,𝑟𝑟)   (24) 

The compatibility condition has the form: 
- radial direction 

 𝑢𝑢(𝑏𝑏,𝑟𝑟) = 𝑢𝑢c(𝑏𝑏,𝑟𝑟) (25) 

- circumferential direction 

 𝑣𝑣(𝑏𝑏,𝑟𝑟) = 𝑣𝑣c(𝑏𝑏,𝑟𝑟)  (26) 
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Equations (20, 24) form a system of six linear alge-
braic equations with unknowns 𝐴𝐴f,𝐵𝐵f,𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷. Com-
pliance 𝑆𝑆s4,h = 𝑆𝑆s4𝑢𝑢 can be determined from Eqn. (25), 
and compliance 𝑆𝑆s4,h = 𝑆𝑆s4𝑣𝑣  – from Eqn. (26). In further 
calculations, the arithmetic mean of these two predic-
tions was adopted, i.e.  

𝑆𝑆s4,h = (𝑆𝑆s4𝑢𝑢 + 𝑆𝑆s4𝑣𝑣) 2⁄ = [1 + 2(1− 𝜈𝜈)𝑝𝑝1 𝑝𝑝⁄ ](𝑠𝑠11 − 𝑠𝑠12) 𝐸𝐸f⁄   
  (27) 

where 
 
𝑝𝑝1 = [1 + 𝜈𝜈f − (1 + 𝜈𝜈)𝑠𝑠11](𝑝𝑝11 − 𝑝𝑝21)  ,   𝑝𝑝 = 𝑝𝑝11𝑝𝑝22 − 𝑝𝑝12𝑝𝑝21

𝑝𝑝11 = (1 + 𝜈𝜈f)[3(1 𝑓𝑓2⁄ − 1) + 4𝜈𝜈f (𝑓𝑓 − 1 𝑓𝑓2⁄ )] +
(1 + 𝜈𝜈)(3− 4𝜈𝜈𝑓𝑓 + 1 𝑓𝑓2⁄ )𝑠𝑠11

 

𝑝𝑝22 = 2(1 + 𝜈𝜈f)(1 𝑓𝑓⁄ − 1) + [3 + 𝜈𝜈f(1− 2𝜈𝜈f)](𝑓𝑓 − 1 𝑓𝑓⁄ ) +
               +[2(1 + 𝜈𝜈) − (3 + 𝜈𝜈 − 2𝜈𝜈2)𝑓𝑓 + (1− 𝜈𝜈 − 2𝜈𝜈2) 𝑓𝑓⁄ ]𝑠𝑠11

 

𝑝𝑝12 = 2(1 + 𝜈𝜈f)[(1 𝑓𝑓⁄ − 1) + 𝜈𝜈f(𝑓𝑓 − 1 𝑓𝑓⁄ )] +
2(1 + 𝜈𝜈)[1− 𝜈𝜈𝑓𝑓 + (1− 𝜈𝜈) 𝑓𝑓⁄ ]𝑠𝑠11

 
 𝑝𝑝21 = 3(1 + 𝜈𝜈f)(1 𝑓𝑓2⁄ − 1) + 2[3 + 𝜈𝜈f(1− 2𝜈𝜈f)](𝑓𝑓 − 1 𝑓𝑓2⁄ ) + 

  +[3(1 + 𝜈𝜈) − 2(3 + 𝜈𝜈 − 2𝜈𝜈2)𝑓𝑓 − (1 + 𝜈𝜈) 𝑓𝑓2⁄ ]𝑠𝑠11 
  (28) 

The fourth task is related to the RVC loaded tangen-
tially in the longitudinal direction, on boundary 
𝑟𝑟 = 𝑏𝑏, by the following shear stress: 

 𝜏𝜏1𝑟𝑟(𝑏𝑏,𝑟𝑟) = 𝜏𝜏0 cos𝑟𝑟   (29) 

as illustrated in Figure 6. According to the true response 
of the UFRT composite, the loading (29) induces pure 
longitudinal shear. 

 

 
Fig. 6. Fourth task in homogenization theory of UFRT composite 

The general solutions in the fourth task have the form 
- stresses and displacements in the fibre (0 ≤ 𝑟𝑟 ≤ 𝑎𝑎): 

 𝜏𝜏1𝑟𝑟f(𝑟𝑟) = 𝐺𝐺f 𝐴𝐴f cos𝑟𝑟   ,    𝑢𝑢1f(𝑟𝑟,𝑟𝑟) = 𝐴𝐴f 𝑟𝑟 cos𝑟𝑟   (30) 

- stresses and displacements in the matrix (𝑎𝑎 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

𝜏𝜏1𝑟𝑟(𝑟𝑟,𝑟𝑟) = 𝐺𝐺(𝐴𝐴 −𝐵𝐵 𝑟𝑟2⁄ ) cos𝑟𝑟  ,     
 𝑢𝑢1(𝑟𝑟,𝑟𝑟) = 𝑟𝑟(𝐴𝐴+ 𝐵𝐵 𝑟𝑟2⁄ ) cos𝑟𝑟 (31) 

- stresses and displacements in the homogenized RVC 
(0 ≤ 𝑟𝑟 ≤ 𝑏𝑏): 

 𝜏𝜏1𝑟𝑟c(𝑟𝑟) = 𝜏𝜏0 cos𝑟𝑟   ,    𝑢𝑢1c(𝑟𝑟,𝑟𝑟) = 𝜏𝜏0 𝑟𝑟 cos𝑟𝑟 𝐺𝐺12⁄   (32) 

The boundary condition in the stress takes the form 
of Eqn. (29). The continuity conditions have the form 

 𝜏𝜏1𝑟𝑟f(𝑟𝑟) = 𝜏𝜏1𝑟𝑟(𝑎𝑎,𝑟𝑟)  ,    𝑢𝑢1f(𝑎𝑎,𝑟𝑟) = 𝑢𝑢1(𝑎𝑎,𝑟𝑟)  (33) 

The compatibility condition has the form 

 𝑢𝑢1(𝑏𝑏,𝑟𝑟) = 𝑢𝑢1c(𝑏𝑏,𝑟𝑟)  (34) 

Equations (29, 33, 34) form a system of four linear 
algebraic equations with 𝐴𝐴f,𝐴𝐴,𝐵𝐵, 𝑆𝑆s5,h unknowns. The 
solution of these equations in terms of elastic compliance 
𝑆𝑆s5,h has the form 

𝑆𝑆s5,h =
𝑠𝑠s[1 + 𝑓𝑓 + 𝑠𝑠s(1− 𝑓𝑓) (1 + 𝜈𝜈f)⁄ ] [1− 𝑓𝑓 + 𝑠𝑠s(1 + 𝑓𝑓) (1 + 𝜈𝜈f)⁄ ] 𝐸𝐸f⁄⁄  
  (35) 

The elastic compliances of composite UFRT, i.e. 
𝑆𝑆11, 𝑆𝑆22 , 𝑆𝑆12, 𝑆𝑆23 , 𝑆𝑆s4, 𝑆𝑆s5, are defined by Eqns. (A.14)3-8. 
As a result of composite homogenization, elastic compli-
ances 𝑆𝑆11,h, 𝑆𝑆12,h, 𝑆𝑆2,h, 𝑆𝑆s4,h, 𝑆𝑆s5,h, defined by Eqns.  
(14, 18, 27, 35) were obtained. Compliances 𝑆𝑆22,h , 𝑆𝑆23,h 
are calculated by means of Eqns. (7). From relations  

𝑆𝑆11 = 𝑆𝑆11,h ,   𝑆𝑆22 = 𝑆𝑆22,h ,   𝑆𝑆12 = 𝑆𝑆12,h ,   

  𝑆𝑆23 = 𝑆𝑆23,h ,   𝑆𝑆s5 = 𝑆𝑆s5,h   (36) 

the effective elastic constants of composite UFRT shall 
be determined, i.e. 

 
𝐸𝐸1 = 1 𝑆𝑆11,h⁄  ,   𝐸𝐸2 = 1 𝑆𝑆22,h⁄  ,   𝜈𝜈21 = −𝐸𝐸1𝑆𝑆12,h ,

 𝜈𝜈32 = −𝐸𝐸2𝑆𝑆23,h,   𝐺𝐺12 = 1 2𝑆𝑆s5,h⁄    (37) 

A validation test of the homogenization theory was 
performed on an exemplary unidirectional E-glass fibre-
reinforced vinylester-matrix composite. According 
 to the producers’ specifications, the elasticity constants 
of the components are: 𝐸𝐸 = 3.60 MPa, 𝜈𝜈 = 0.35, 𝐸𝐸𝑓𝑓 =
= 70.0 MPa,   𝜈𝜈𝑓𝑓 = 0.20. The laminate plate reinforced 
with a set of unidirectional glass fabrics was manufac-
tured in 2014 using hand lay-up technology with fibre 
volume fraction 𝑓𝑓 = 0.29.  

 
TABLE 1. Experimental and predicted values of elastic con-

stants of exemplary homogenized UFRT composite 
along with relative deviation δ of predicted values 

 
E1  

[GPa] 
E2 

[GPa] 
ν21 ν32 G12 

[GPa] 
Experiment 22.4 6.05 0.28 0.47 2.24 

Prediction 22.9 5.80 0.30 0.50 2.29 

δ  [%] 2.2 -3.3 7.1 6.4 2.2 

 
Experimental identification of the elastic constants of 

the UFRT composite was conducted in 2014 under nor-
mal conditions according to standard specifications  
[5-9]. The tensile, compression and shear tests were  
performed in 2014. The experiments and processing of 
the registered data are reported by Klasztorny et al. [10].  

The experimental and predicted values of the inde-
pendent elastic constants of the homogenized UFRT 
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composite are displayed in Table 1. The results confirm 
the technical acceptability of the modified homogeniza-
tion theory. 

NUMERICAL ALGORITHMS 
Numerical integration 

Function 𝐿𝐿(𝑢𝑢), 0 < 𝑟𝑟 < 1, defining the fractional ex-
ponential function in an integral form, is a continuous in-
termediate function between Dirac functions 𝛿𝛿(𝑢𝑢 = 1) 
for 𝑟𝑟 = 1 and 𝛿𝛿(𝑢𝑢 = 0) for 𝑟𝑟 = 0, and contains  
a singularity at point 𝑢𝑢 = 0 (Eqn. (A.5)3). 

Consider an integral of the general form 

 𝐽𝐽 = ∫ 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑢𝑢∞
0    (38) 

in which the subintegral function 𝑓𝑓(𝑢𝑢) contains factor 
𝐿𝐿(𝑢𝑢). The integral described by Eqn. (38) can be calcu-
lated numerically using a high-rank Gauss-Legendre 
quadrature. We perform a double shift of the variable 

 𝑢𝑢 = (1− 𝑣𝑣) 𝑣𝑣⁄  ,   𝑣𝑣 = (1 + 𝑥𝑥) 2⁄    (39) 

and transform Eqn. (38) to the form 

    𝐽𝐽 = 2∫ 𝑓𝑓(𝑢𝑢) (1 + 𝑥𝑥)−2𝑑𝑑𝑥𝑥1
−1  ,   𝑢𝑢 = (1− 𝑥𝑥) (1 + 𝑥𝑥)⁄   (40) 

Integration using the n-point Gauss-Legendre quad-
rature gives the result (Ref. [11]) 

𝐽𝐽 ≈ 2∑ 𝑤𝑤𝑘𝑘𝑓𝑓(𝑢𝑢𝑘𝑘)𝑛𝑛
𝑘𝑘=1 (1 + 𝑥𝑥𝑘𝑘)−2 ,   𝑢𝑢𝑘𝑘 = (1− 𝑥𝑥𝑘𝑘) (1 + 𝑥𝑥𝑘𝑘)⁄   

   (41) 

Quantities 𝑤𝑤𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑘𝑘 = 1, 2, … , 𝑛𝑛 are the weights and 
nodes of the n-point quadrature. Each subintegral function 
is approximated with a (2𝑛𝑛 + 1)th degree polynomial. 

Formula (41) is used for integrals occurring in  
functions 𝑇𝑇c 𝛷𝛷(𝜏𝜏),𝑟𝑟(𝜏𝜏), whereby 𝜏𝜏 = 𝑡𝑡 𝑇𝑇c⁄  ,   𝑢𝑢𝑟𝑟 = 
=  exp(𝑟𝑟 ln𝑢𝑢). In the case 𝑓𝑓(𝑢𝑢) = 𝐿𝐿(𝑢𝑢) we obtain con-
trol condition 𝐽𝐽 = 1 (Eqn. (A.7)2). 

Tension creep test on thermoset 
The stress-controlled tension creep test on a thermo-

set in direction x1 consists of two phases (Fig. 7). Phase 
1 is elastic; stress 𝜎𝜎1(𝑡𝑡) increases quasi-linearly in inter-
val �0,𝜎𝜎1,0� at a high stress rate, longitudinal strain 𝜀𝜀1(𝑡𝑡) 
increases quasi-linearly in interval �0, 𝜀𝜀1,0�, and trans-
verse strains 𝜀𝜀2(𝑡𝑡) = 𝜀𝜀3(𝑡𝑡) decrease quasi-linearly in in-
terval �0, 𝜀𝜀2,0�, with 𝜀𝜀2,0 < 0. Phase 1 is used to deter-
mine the elastic constants of the thermoset from the 
classical equations 

 𝐸𝐸 = Δ𝜎𝜎1 Δ𝜀𝜀1⁄  ,   𝜈𝜈 = −Δ𝜀𝜀2 Δ𝜀𝜀1⁄    (42) 

where Δ𝜀𝜀2 < 0. The use of stress and strain increments 
in the second part of Phase 1 allows elimination of meas-
urement errors at the beginning of Phase 1. The appro-
priate level of stress 𝜎𝜎1,0 is to ensure the reversibility of 
deformations at creep. The shear and bulk constants 

𝐺𝐺,𝐵𝐵, 𝑆𝑆s, 𝑆𝑆b are calculated according to Eqns. (A.1), 
(A.3)8, (A.5)4. 

In Phase 2, the sample is subjected to creep at a con-
stant stress 𝜎𝜎1,0 in time interval [0, 𝑇𝑇l], where 𝑇𝑇l – time 
corresponding to long-term creep. The time correspond-
ing to short-term creep 𝑇𝑇s = 0.1𝑇𝑇c will also be used in 
the algorithm for determining the viscoelastic constants 
of the thermoset.  

 

 
Fig. 7. General diagram of stress-controlled unidirectional tension creep 

test on thermoset 

Determination of viscoelastic constants of thermoset 
Viscoelastic constants 𝑐𝑐, 𝑟𝑟 are dimensionless, while 

retardation time 𝑇𝑇c is measured in minutes. The experi-
mental tension creep test records directional strains 
𝜀𝜀1(𝑡𝑡), 𝜀𝜀2(𝑡𝑡). The time courses of the experimental shear 
and bulk strains are calculated from the well-known 
equations  

𝜀𝜀s1e(𝑡𝑡) = 2
3

[𝜀𝜀1(𝑡𝑡)− 𝜀𝜀2(𝑡𝑡)] , 𝜀𝜀be(𝑡𝑡) =  1
3

[𝜀𝜀1(𝑡𝑡) + 2𝜀𝜀2(𝑡𝑡)]  (43) 

The control conditions are of the form 

 𝜀𝜀s1e(0) = 𝑆𝑆s𝜎𝜎s1e ,   𝜀𝜀be(0) = 𝑆𝑆b𝜎𝜎be  (44) 

where 

 𝜎𝜎s1e = 2
3
𝜎𝜎1,0 ,   𝜎𝜎be = 1

3
𝜎𝜎1,0  (45) 

If the H-R/H rheological model is adequate for ther-
mosets, then  

  𝜀𝜀s1e(𝑡𝑡) = [1 + 𝑐𝑐𝑟𝑟(𝜏𝜏)]𝜀𝜀s1e(0) , 𝜀𝜀be(𝑡𝑡) = 𝜀𝜀be(0) ,   𝑡𝑡 ≥ 0  (46) 

with 𝜏𝜏 = 𝑡𝑡 𝑇𝑇c⁄ . In the identification algorithm, we will 
use the values of the simulation creep function corre-
sponding to times 𝑇𝑇c, 0.1𝑇𝑇c, i.e. 
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 𝑎𝑎 =  𝑟𝑟(1) ,   𝑏𝑏 =  𝑟𝑟(0.1)  (47) 

The readings from experimental graph 𝜀𝜀s1e(𝑡𝑡) and 
the calculation accuracy will be given to 3 meaningful 
digits. 

The analytical algorithm for identifying the viscoe-
lastic constants of the thermoset, 𝑇𝑇c, 𝑐𝑐, 𝑟𝑟, is based on Eqn. 
(46)1 and is as follows: 
1) prediction of the value of constant 𝑟𝑟 based on a com-

parison of the gradients of experimental function 
𝜀𝜀s1e(𝑡𝑡) with the gradients of simulation creep func-
tion 𝑟𝑟(𝜏𝜏), both functions on a semi-logarithmic scale; 

2) prediction of the value of parameter 𝑎𝑎(𝑟𝑟); 
3) reading abscissa 𝑦𝑦 = log𝑇𝑇c corresponding to the in-

flection point of graph 𝜀𝜀s1e(𝑡𝑡) on a logarithmic time 
scale; 

4) calculations:    
𝑇𝑇c = 10𝑦𝑦 = exp(𝑦𝑦 ln 10 ) ,     0.1𝑇𝑇c ; 

5) readings:    

𝜀𝜀s1e(0), 𝜀𝜀s1e(𝑇𝑇c), 𝜀𝜀s1e(0.1𝑇𝑇c) ; 

6) 𝜀𝜀s1e(𝑇𝑇c) = (1 + 𝑐𝑐 ∙ 𝑎𝑎)𝜀𝜀s1e(0)  ⟹      
 𝑐𝑐 = [𝜀𝜀s1e(𝑇𝑇c) 𝜀𝜀s1e(0)⁄ − 1] 𝑎𝑎⁄  ;  (48) 

7) 𝜀𝜀s1e(0.1𝑇𝑇c) = (1 + 𝑐𝑐 ∙ 𝑏𝑏)𝜀𝜀s1e(0) ⟹ 
𝑏𝑏 = [𝜀𝜀s1e(0.1𝑇𝑇c) 𝜀𝜀s1e(0)⁄ − 1] 𝑐𝑐⁄  ; (49) 

8) calculation of constant 𝑟𝑟(𝑏𝑏); 
9) calculation of constant 𝑎𝑎(𝑏𝑏), comparison with the 

predicted value and iteration if necessary (return to 
point 6). 
Once constants 𝑇𝑇c, 𝑐𝑐, 𝑟𝑟 are determined, the simulation 

shear strain vs. time can be calculated 

𝜀𝜀s1(𝑡𝑡) = [1 + 𝑐𝑐𝑟𝑟(𝜏𝜏)]𝜀𝜀s1(0) , 𝜀𝜀s1(𝑡𝑡) = 𝜀𝜀s1e(0) ,   𝑡𝑡 ∈ [0,𝑇𝑇l]   
  (50) 

and presented on a logarithmic time scale (𝑦𝑦 = log 𝑡𝑡) 
against the experimental graph. In the registration inter-
val of the creep process, we select a set of 𝑁𝑁 quasi- 
-equally spaced collocation points on a logarithmic time 
scale. From graph 𝜀𝜀s1e(𝑡𝑡), experimental values 𝜀𝜀s1e(𝑡𝑡𝑖𝑖) ,
𝑡𝑡𝑖𝑖 = 10𝑦𝑦𝑖𝑖 ,   𝑖𝑖 = 1, 2, … ,𝑁𝑁, are read.  The relative error of 
the deviation of graph 𝜀𝜀s1(𝑡𝑡) from graph 𝜀𝜀s1e(𝑡𝑡) on  
a logarithmic time scale is 

 𝛿𝛿 = ∑ |𝜀𝜀s1(𝑡𝑡𝑖𝑖)− 𝜀𝜀s1e(𝑡𝑡𝑖𝑖)|𝑁𝑁
𝑖𝑖=1 ∑ 𝜀𝜀s1e(𝑡𝑡𝑖𝑖)𝑁𝑁

𝑖𝑖=1⁄   (51) 

whereby 

 
𝜀𝜀s1(𝑡𝑡𝑖𝑖) = [1 + 𝑐𝑐𝑟𝑟(𝜏𝜏𝑖𝑖)]𝜀𝜀s1(0)

𝜏𝜏𝑖𝑖 = 𝑡𝑡𝑖𝑖 𝑇𝑇c⁄ ,   𝑟𝑟(𝜏𝜏𝑖𝑖) = 1− ∫ exp(−𝑢𝑢𝜏𝜏𝑖𝑖)𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞
0

 (52) 

Constant 𝑟𝑟 is contained in function 𝐿𝐿(𝑢𝑢). 

Determination of effective elastic and viscoelastic  
constants of UFRT composite 

According to the formulated elastic-viscoelastic 
model, composite UFRT is described by 5 viscoelastic 
constants, i.e. 𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5, 𝑟𝑟,𝑇𝑇c, where constants 𝑟𝑟,𝑇𝑇c also 

describe the thermoset matrix. Long-term creep coeffi-
cients 𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5 will be determined using the viscoelastic-
elastic correspondence principle (VECP). 

Unconjugated standard constitutive equations of the 
linear elasticity of  a homogenized UFRT composite 
(Eqns. (A15-A.17) are expressed in terms of three quasi- 
-shear/shear elastic compliances, i.e. 𝑆𝑆s1, 𝑆𝑆s4, 𝑆𝑆s5 (deter-
mined by Eqns. (A.17)3,4, (A.14)8). From Eqns. (A.17)3, 
(A.14)3,5, we obtain the first compliance corresponding 
to the homogenized composite, i.e. 

 𝑆𝑆s1,h = 𝑆𝑆11,h − 𝜆𝜆𝑆𝑆12,h  (53) 

As a result of the homogenization of composite 
UFRT, the elastic compliances 𝑆𝑆s𝑗𝑗 ,h(𝑠𝑠s , 𝑠𝑠b),   𝑗𝑗 = 1, 4, 5, 
are dependent on dimensionless elastic compliances 
𝑠𝑠s, 𝑠𝑠b of the polymeric matrix defined in Eqns. (5)3,4. 

As a result of the homogenization of a UFRT compo-
site, elastic compliances 𝑆𝑆s𝑗𝑗,h(𝑠𝑠s, 𝑠𝑠b),  𝑗𝑗 = 1, 4, 5, depend 
on dimensionless elastic compliances of the polymeric 
matrix, 𝑠𝑠s, 𝑠𝑠b, defined in Eqns. (5)3,4. 

The complex compliances of the UFRT composite, 
corresponding to the H-R/H rheological model, result 
from Eqns. (A.18)1, (A.22). They can be written in the 
following dimensionless form: 

𝑠𝑠s𝑗𝑗∗ (𝛼𝛼) = 𝑠𝑠s𝑗𝑗′ (𝛼𝛼) + i𝑠𝑠s𝑗𝑗′′ (𝛼𝛼) ,   𝑠𝑠s𝑗𝑗∗ (𝛼𝛼) = 𝑆𝑆s𝑗𝑗∗ (𝛼𝛼) 𝑆𝑆s𝑗𝑗⁄ , 𝛼𝛼 = 𝜔𝜔𝑇𝑇c ,   𝑗𝑗 = 1, 4, 5
𝑠𝑠s𝑗𝑗′ (𝛼𝛼) = 1 + 𝑐𝑐𝑗𝑗𝑀𝑀′(𝛼𝛼) ,   𝑠𝑠s𝑗𝑗′′ (𝛼𝛼) = −𝑐𝑐𝑗𝑗𝑀𝑀′′(𝛼𝛼)

𝑀𝑀′(𝛼𝛼) =
1 + 𝛼𝛼𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ )

1 + 2𝛼𝛼𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + 𝛼𝛼2𝑟𝑟
 ,𝑀𝑀′′(𝛼𝛼) =

𝛼𝛼𝑟𝑟 sin(𝜋𝜋𝑟𝑟 2⁄ )
1 + 2𝛼𝛼𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + 𝛼𝛼2𝑟𝑟

 

  (54) 

The complex compliances of a UFRT composite can 
also be determined using the VECP, i.e. 

𝑠𝑠s𝑗𝑗,h
∗ (𝛼𝛼) = 𝑠𝑠s𝑗𝑗,h

′ (𝛼𝛼) + i𝑠𝑠s𝑗𝑗,h
′′ (𝛼𝛼) = 𝑆𝑆s𝑗𝑗,h[𝑠𝑠𝑠𝑠∗(𝛼𝛼),𝑠𝑠b] 𝑆𝑆s𝑗𝑗⁄  ,   𝑗𝑗 = 1, 4, 5

𝑠𝑠s∗(𝛼𝛼) = 𝑠𝑠s′(𝛼𝛼) + i𝑠𝑠s′′(𝛼𝛼) ,   𝑠𝑠s′(𝛼𝛼) = 𝑠𝑠s[1 + 𝑐𝑐𝑀𝑀′(𝛼𝛼)] ,
 

𝑠𝑠s′′(𝛼𝛼) = −𝑠𝑠s𝑐𝑐𝑀𝑀′′(𝛼𝛼) 

   (55) 

Variable 𝛼𝛼 is defined in Eqn. (54)3. 
Viscoelastic constants 𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5 are determined from 

the following conditions: 

 𝑠𝑠s𝑗𝑗′ (𝛼𝛼𝑑𝑑) = 𝑠𝑠s𝑗𝑗,h
′ (𝛼𝛼𝑑𝑑) ,   𝑗𝑗 = 1, 4, 5 (56) 

where 𝛼𝛼𝑑𝑑 is the value of α for which conditions 𝑀𝑀′(𝛼𝛼) ≈
≈ 0.5,   𝑀𝑀′′(𝛼𝛼) = min are met. After inserting Eqn. 
(54)4 into Eqn. (56), we obtain 

 𝑐𝑐𝑗𝑗 = �𝑠𝑠s𝑗𝑗,h
′ (𝛼𝛼𝑑𝑑)− 1� 𝑀𝑀′(𝛼𝛼𝑑𝑑)⁄  ,   𝑗𝑗 = 1, 4, 5  (57) 

The loss compliances have small values compared to 
the storage compliances, i.e. they are less conditioned. 

The relative error of deviation of graphs 
𝑠𝑠s𝑗𝑗′ (𝛼𝛼), 𝑠𝑠s𝑗𝑗,h

′ (𝛼𝛼), 𝑗𝑗 = 1, 4, 5, is 

 𝛿𝛿 = ∑ �𝑠𝑠s𝑗𝑗′ (𝛼𝛼𝑖𝑖)− 𝑠𝑠s𝑗𝑗,h
′ (𝛼𝛼𝑖𝑖)�𝑛𝑛

𝑖𝑖=1 ∑ 𝑠𝑠s𝑗𝑗,h
′ (𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1�   (58) 

whereby 𝛼𝛼𝑖𝑖 = 2𝜋𝜋𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖 = 𝑖𝑖 ∙ ∆𝑦𝑦,   𝑖𝑖 = 1, 2, … ,𝑛𝑛. 
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EXPERIMENTAL TEST AND NUMERICAL TESTS 
Experimental test 

The experimental creep test was performed on  
a new sample made of ‘Polimal 109’ structural unsatu-
rated polyester resin (former manufacturer: ‘Organika 
Sarzyna’ Chemical Plants, Sarzyna, Poland). The test 
was performed in 2002 at normal conditions, using  
a lever creeper. 

According to the Technical Data Sheet of the ‘Polimal 
109’ resin, the basic material constants of this resin are: ten-
sile strength 𝑅𝑅t = 70 MPa, Young’s modulus for tension 
𝐸𝐸 = 4.30 GPa, ultimate longitudinal strain 𝜀𝜀t = 2% = 
= 0.02 = 20000 μs, heat distortion temperature  
𝑇𝑇h = 63℃, where μs denotes micro strain (1 μs = 10−6). 

The tension creep test was performed according to the 
experiment description. In Phase 2, the normal longitu-
dinal stress was 𝜎𝜎1,0 = 0.15𝑅𝑅t = 10.5 MPa, which guar-
anteed reversibility of the creep process. On the basis of 
Phase 1 (elastic) of the loading process for this specimen, 
the following parameters were identified (technical  
accuracy of 3 meaningful digits): 

𝐸𝐸 = 4.28 GPa ,   𝜈𝜈 = 0.363
𝜀𝜀1(0) = 2450 μs ,   𝜀𝜀2(0) = −892 μs
𝜀𝜀s1e = 2230 μs ,   𝜀𝜀be = 223 μs

 

Figure 8 shows graphs of the directional strains vs. 
time in the reversible creep test with unidirectional  
tension, recorded in interval [0, 𝑇𝑇l], 𝑇𝑇l = 105 min. Pro-
gressive recording intervals from 0.005 min at the begin-
ning of the process to 275 min at the end of the process 
were used. Figures 9 and 10 (zoom) show the time 
courses of the directional strain rates calculated approxi-
mately according to the formula 

 

𝜀𝜀�̇�𝑗(𝑡𝑡𝑖𝑖) = 𝑑𝑑𝜀𝜀𝑗𝑗 𝑑𝑑𝑡𝑡⁄ ≈ �𝜀𝜀𝑗𝑗(𝑡𝑡𝑖𝑖+10)− 𝜀𝜀𝑗𝑗(𝑡𝑡𝑖𝑖)� (𝑡𝑡𝑖𝑖+10 − 𝑡𝑡𝑖𝑖)⁄ ,     
 𝑗𝑗 = 1, 2,    𝑖𝑖 = 1, 2, …   (59) 

According to the theoretical prediction of reversible 
creep, the strain rates decrease in Phase 2. Very large  
values of the strain rates were observed at the beginning 
of the time interval, which decreased to very small values 
for 𝑡𝑡 > 104  min i.e. 

𝜀𝜀1̇(0.1) = 132 μs min⁄  ,   𝜀𝜀2̇(0.1) = −57 μs min⁄
𝜀𝜀1̇(80000) = 0.010 μs min⁄  ,   𝜀𝜀2̇(80000) = −0.005 μs min⁄  

 
Fig. 8. ‘Polimal 109’ polyester resin thermoset. Directional strains in  

experimental creep test with unidirectional tension 

 
Fig. 9. ‘Polimal 109’ polyester resin thermoset. Directional strain rates in 

experimental creep test with unidirectional tension 

 
Fig. 10. ‘Polimal 109’ polyester resin thermoset. Directional strain rates in 

experimental creep test with unidirectional tension (zoom) 

Figure 11 shows the directional strains of the sample 
in the experimental creep test with unidirectional ten-
sion, on a logarithmic time scale.  
 

 
Fig. 11. ‘Polimal 109’ polyester resin thermoset. Directional strains in 

experimental creep test with unidirectional tension, on loga-
rithmic time scale 

The levels of the initial (elastic) deformation are in-
dicated by dashed lines. As expected, a long-term creep 
time, 𝑇𝑇l = 105 min. (~70 days), would have to be ex-
tended at least 10 times to prove the creep reversibility 
hypothesis. Moreover, the reverse creep test (recovery 
test) would be required. The interpretation of small  
oscillations in the directional strain patterns on a loga-
rithmic time scale requires additional creep tests on a set 
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of samples, with monitoring of the temperature, humidity 
and material aging. 

Figure 12 shows the shear and bulk strains of the sam-
ple in the experimental creep test with unidirectional ten-
sion, on a logarithmic time scale. The levels of the initial 
(elastic) deformation are marked with dashed lines. 
Transformation of the directional strains was performed 
according to Eqns. (43). The constant bulk strain hypoth-
esis was confirmed. 

 

 
Fig. 12. ‘Polimal 109’ polyester resin thermoset. Shear and bulk strains in 

experimental creep test with unidirectional tension, on logarith-
mic time scale 

Software 
Numerical calculations were performed using an 

original programme written in the Pascal language.  
The computational algorithms are described in Section 3. 
The programme has 7 computational paths: 
1) Testing the accuracy of the integration of improper 

integrals with a fractional exponential generic func-
tion, by means of Gauss-Legendre quadratures. 

2) Analysis of a creep function described by a fractional 
exponential generic function. 

3) Analysis of the complex compliance of a thermoset, 
corresponding to a fractional exponential generic 
function. 

4) Identification of the viscoelastic constants of an ex-
emplary thermoset, corresponding to the H-R/H rhe-
ological model. 

5) Determination of the elastic constants of an exem-
plary UFRT composite, according to the modified ho-
mogenization theory. 

6) Analysis of the complex compliances of a UFRT 
composite, corresponding to a fractional exponential 
generic function. 

7) Identification of the viscoelastic constants of an ex-
emplary UFRT composite, corresponding to the  
H-R/H rheological model. 
The accuracies adopted are as follows: accuracy of 

input data: 3 meaningful digits; calculation accuracy: 
double precision; result accuracy: 3 meaningful digits. 
The results were output as text files and transferred to 
Excel sheets to create the final graphs. 

Gauss-Legendre quadrature testing 
Testing the accuracy of the integration of improper 

integrals using Gauss-Legendre quadratures, with  
a subintegral function containing a fractional exponential 
generic function, was performed for integral 𝐽𝐽 = 
= ∫ 𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞

0 = 1, according to Eqn. (41). Quadratures 
of degrees 𝑛𝑛 = 15, 25, 32 were applied; the nodes and 
weights were taken from Ref. [12]. The integration was 
performed for 𝑟𝑟 ∈ [0.30, 0.98]. 

Figure 13 presents the graphs of the relative error  
𝛿𝛿 = |1 − 𝐽𝐽| ∙ 100%. In further calculations the most  
accurate quadrature of degree available 𝑛𝑛 = 32 was 
used; in subinterval 𝑟𝑟 ∈ [0.55, 0.95] error δ < 1%, and in 
subinterval r ∈ [0.36,0.54] error 𝛿𝛿 ∈ [1%, 7%]. The given 
errors are technically acceptable, but for fraction 𝑟𝑟 of the 
order 0.40 a quadrature of a much higher degree is  
desirable. 

Creep function analysis 
The graphs of creep function 𝑟𝑟(𝜏𝜏), 𝜏𝜏 = 𝑡𝑡 𝑇𝑇c⁄ , were 

computed according to Eqn. (41). The simulations  
were performed in interval 𝜏𝜏 ∈ [10−2, 104], for  
𝑟𝑟 = 0.33, 0.40, 0.50, 0.60, 1. The graph corresponding 
to the H-K/H model (𝑟𝑟 = 1) is the reference graph.  
In order to reveal the features of the H-R/H rheological 
model, the creep function graphs are shown on a semi-
logarithmic scale with 𝑥𝑥 as the abscissa, with 

𝑥𝑥 = log 𝜏𝜏 = ln 𝜏𝜏 ln 10⁄  ,  𝜏𝜏 = 10𝑥𝑥 = exp(𝑥𝑥 ln 10) , 𝑥𝑥 ∈ [−2, 4] 
  (60) 

 
Fig. 13. Integration error 𝜹𝜹(𝒓𝒓) [%] 

The graphs of the creep function for the mentioned 
values of 𝑟𝑟 are shown in Figure 14. Function φ(τ) on  
a semi-logarithmic scale is increasing, containing one in-
flection point. The slope of the graph at the inflection 
point decreases with decreasing fraction 𝑟𝑟. 

Time point 𝑡𝑡 = 𝑇𝑇c corresponds to 𝜏𝜏 = 1 ,   𝑥𝑥 = 0. 
Time point 𝑡𝑡 = 0.1𝑇𝑇c corresponds to 𝜏𝜏 = 0.1 ,   𝑥𝑥 = −1. 
The values of the creep function at characteristic points 
𝑇𝑇c, 0.1𝑇𝑇c, used in the algorithm for identification of the 
viscoelastic constants of a thermoset, are summarized in 
Table 2. Function 𝑎𝑎(𝑟𝑟) has a quasi-constant course, 
while function 𝑏𝑏(𝑟𝑟) is quasi-linear. 
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TABLE 2.  Values of creep function 𝒓𝒓(𝝉𝝉) at characteristic points 

 
𝒓𝒓 

0.33 0.40 0.50 0.60 1 

𝑎𝑎 = 𝑟𝑟(1) 0.598 0.583 0.581 0.589 0.632 

𝑏𝑏 = 𝑟𝑟(0.1) 0.405 0.347 0.285 0.235 0.095 

 

 
Fig. 14. Graphs of creep function 𝒓𝒓(𝝉𝝉) on semi-logarithmic scale,  

corresponding to selected values of 𝒓𝒓 

Analysis of complex compliance of thermoset 
The complex compliance of a thermoset is described 

by Eqns. (23), (3)8 presented in Ref. [1]. At this stage of 
the numerical tests it is not necessary to introduce mod-
ulus 𝐸𝐸f. The relative complex compliance of a thermoset 
is described by the following formulae: 

 
𝑆𝑆s∗(𝛼𝛼) = 𝑆𝑆s′(𝛼𝛼) + i𝑆𝑆s′′(𝛼𝛼) ,   𝑆𝑆s′(𝛼𝛼) = 𝑆𝑆s[1 + 𝑐𝑐𝑀𝑀′(𝛼𝛼)] , 

𝑆𝑆s′′(𝛼𝛼) = −𝑆𝑆s𝑐𝑐𝑀𝑀′′(𝛼𝛼) 
𝑆𝑆s = 1 2𝐺𝐺⁄ , 𝑠𝑠s∗(𝛼𝛼) = 𝑠𝑠s′(𝛼𝛼) + i𝑠𝑠s′′(𝛼𝛼) , 

  𝛼𝛼 = 𝜔𝜔𝑇𝑇c = 2𝜋𝜋𝑥𝑥,    𝑥𝑥 ∈ [0,   4] 
𝑠𝑠s′(𝛼𝛼) = 𝑆𝑆s′(𝛼𝛼) 𝑆𝑆s⁄ = 1 + 𝑐𝑐𝑀𝑀′(𝛼𝛼) ,    

 𝑠𝑠s′′(𝛼𝛼) = 𝑆𝑆s′′(𝛼𝛼) 𝑆𝑆s⁄ = −𝑐𝑐𝑀𝑀′′(𝛼𝛼) (61) 
 

whereby functions 𝑀𝑀′(𝛼𝛼),𝑀𝑀′′(𝛼𝛼), depending on visco- 
elastic constant 𝑟𝑟, are defined by Eqns. (54)6,7. The 
adopted range of values of dimensionless variable 𝑥𝑥  
is sufficient for analysis of the characteristics of the  
relative storage and loss compliances 𝑠𝑠s′(𝛼𝛼), 𝑠𝑠s′′(𝛼𝛼). Step  
Δ𝑥𝑥 = 0.01 was adopted. The complex compliance analy- 
sis of a thermoset was carried out for constant 𝑐𝑐 = 2 as 
an example. 
 

 
Fig. 15. Relative storage and loss compliances vs. variable 𝒙𝒙, correspond-

ing to selected values of 𝒓𝒓 

 
Fig. 16. Relative storage and loss compliances vs. variable 𝒙𝒙, correspond-

ing to selected values of 𝒓𝒓 (zoom) 

Figures 15 and 16 show the relative storage and loss 
compliances vs. variable 𝑥𝑥, for selected values of  
constant 𝑟𝑟. The reference graphs correspond to 𝑟𝑟 = 1.  
At 𝑥𝑥 = 0.159  a node of curves 𝑠𝑠s′(𝛼𝛼) is formed. At this 
point 𝑠𝑠s′(𝛼𝛼) ≈ 1 + 𝑐𝑐 2⁄ ,   𝑠𝑠s′′(𝛼𝛼) = min. This point was 
used in the algorithm to identify the viscoelastic  
constants of the UFRT composite, i.e. 𝛼𝛼 = 2𝜋𝜋 ∙ 0.159 = 
= 0.318𝜋𝜋. The gradient of 𝑠𝑠s′(𝛼𝛼) at the nodal point de-
creases with a decreasing value of 𝑟𝑟. 

Identification of viscoelastic constants of ‘Polimal 109’ 
thermoset 

An algorithm for identifying the viscoelastic con-
stants of a thermoset was formulated in in this study. The 
identification was performed for the ‘Polimal 109’ resin. 
The identification calculations in the final iteration are as 
follows: 
1) predicted value:  𝑟𝑟 = 0.37; 
2) reading from Table 2:  𝑎𝑎(𝑟𝑟) = 0.59; 
3) reading abscissa corresponding to the point of inflec-

tion of graph 𝜀𝜀s1e(𝑡𝑡) on a semi-logarithmic scale, 
without taking into account the disturbing oscilla-
tions: 𝑦𝑦 = 4.84; 

4) 𝑇𝑇c = exp(4.84 ln 10) = 69200 min, 0.1𝑇𝑇c =
6920 min; 

5) readings: 𝜀𝜀s1e(0) = 2230 μs, 𝜀𝜀s1e(𝑇𝑇c) = 5280 μs,
𝜀𝜀s1e(0.1𝑇𝑇c) = 4160 μs; 

6) 𝑐𝑐 = [5280 2230⁄ − 1] 0.59⁄ = 2.32; 
7) 𝑏𝑏 = [4160 2230⁄ − 1] 2.32⁄ = 0.373; 
8) 𝑟𝑟(𝑏𝑏) = 0.370; 
9) 𝑎𝑎(𝑏𝑏) = 0.590. 

 

 
Fig. 17. Simulated shear strain graph 𝜺𝜺𝐬𝐬𝟏𝟏(𝒕𝒕) against experimental shear 

strain graph 𝜺𝜺𝐬𝐬𝟏𝟏𝐬𝐬(𝒕𝒕) 
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The results of the identification of the viscoelastic 
constants of the ‘Polimal 109’ resin are therefore as fol-
lows: 𝑇𝑇c = 69200 min., 𝑐𝑐 = 2.32, 𝑟𝑟 = 0.370. The rel-
ative error of the deviation of the 𝜀𝜀s1(𝑡𝑡) curve from the 
𝜀𝜀s1e(𝑡𝑡) curve on a logarithmic time scale, calculated in 
interval 𝑦𝑦 ∈ [−1, 5], is 𝛿𝛿 = 3.1% (Fig. 17). In inter- 
val 𝑦𝑦 ∈ [−1, 0.90], i.e. for small values of time  
𝑡𝑡 ∈ [0.1 min. , 8 min. ], the H-R/H model slightly over-
estimates the shear strains. In the technically relevant  
interval 𝑦𝑦 ∈ [1, 5], i.e. 𝑡𝑡 ∈ [10 min., 100000 min],  
the H-R/H model is fully adequate (100000 min ≈ 
≈ 70 days). The long-term shear strain value predicted 
by Eqn. (46)1 is 𝜀𝜀s1e(∞) = (1 + 𝑐𝑐 ∙ 1) ∙ 𝜀𝜀s1e(0) =
7400 μs. The long-term relaxation coefficient and relax-
ation time of the ‘Polimal 109’ resin (calculated from 
Eqns. (25)3, (29) given in Ref. [1]) are: 𝑑𝑑 = 0.70, 
𝑇𝑇d = 2700 min. 

Determination of elastic constants of UFRT  
composite 

The assumptions for a UFRT composite are summa-
rized in Introduction. The modified homogenization  
theory of a UFRT composite is presented in second  
Section. The elastic constants of a UFRT composite are 
calculated analytically from Eqns. (37). 

A UFRT composite made of the following compo-
nents was chosen as the illustrative material: 
- matrix: unsaturated polyester resin ‘Polimal 109’ 

(linearly viscoelastic isotropic material) with elastic 
constants 𝐸𝐸 = 4.28 GPa,   𝜈𝜈 = 0.363; 

- reinforcing fibres: E-glass (linearly elastic isotropic 
material) with elastic constants 𝐸𝐸f = 72.4 GPa, 
𝜈𝜈 = 0.220; 

- fibre volume fraction 𝑓𝑓 = 0.50 (vacuum infusion 
technology). 
The predicted values of the independent elastic con-

stants of the homogenized UFRT composite (linearly 
elastic monotropic material) are:  

𝐸𝐸1 = 38.4 GPa,   𝐸𝐸2 = 9.72 GPa,   𝜈𝜈21 = 0.285, 
𝜈𝜈32 = 0.526,  𝐺𝐺12 = 4.14 GPa  

In addition, 𝐺𝐺23 = 3.18 GPa, 𝜈𝜈12 = 0.0721, 𝜆𝜆 = 0.137. 

Determination of complex compliances  
and viscoelastic constants of UFRT composite 

Viscoelastic constants 𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5 of the tested UFRT 
composite, calculated analytically with a technical accu-
racy of 0.01 from Eqns. (57), are:  

𝑐𝑐1 = 0.07, 𝑐𝑐4 = 2.18, 𝑐𝑐5 = 2.04.  

H-R/H storage compliance graphs 𝑠𝑠s𝑗𝑗′ (𝛼𝛼) against VECP 
storage compliance graphs 𝑠𝑠s𝑗𝑗 ,h

′ (𝛼𝛼) are presented in  
Figures 18-20 for 𝑗𝑗 = 1, 4, 5 respectively. 

The long-term relaxation coefficients and relaxation 
times of the tested UFRT composite (calculated from 
Eqns. (A.24)5,6) are:  

  𝑑𝑑1 = 0.065,   𝑑𝑑4 = 0.69,   𝑑𝑑5 = 0.67,  𝑇𝑇d5 = 3430 min 
  𝑇𝑇d1 = 57600 min,   𝑇𝑇d4 = 3040 min,   

 

 
Fig. 18. H-R/H storage compliance 𝒔𝒔𝐬𝐬𝟏𝟏′ (𝜶𝜶) against VECP storage compli-

ance 𝒔𝒔𝐬𝐬𝟏𝟏,𝐡𝐡
′ (𝜶𝜶) 

 
Fig. 19. H-R/H storage compliance 𝒔𝒔𝐬𝐬𝐬𝐬′ (𝜶𝜶) against VECP storage compli-

ance 𝒔𝒔𝐬𝐬𝐬𝐬,𝐡𝐡
′ (𝜶𝜶) 

 
Fig. 20. H-R/H storage compliance 𝒔𝒔𝐬𝐬𝐬𝐬′ (𝜶𝜶) against VECP storage compli-

ance 𝒔𝒔𝐬𝐬𝐬𝐬,𝐡𝐡
′ (𝜶𝜶) 

The conclusions resulting from analysis of the graphs 
shown in Figures 18-20 are as follows: 
- The relative deviation errors of the H-R/H and 

VECP curves, calculated in interval 𝑦𝑦 ∈ [0, 0.5], 
are 𝛿𝛿 = 0.3% , 0.05% , 0.005% for 𝑠𝑠s1′ , 𝑠𝑠s4′ , 𝑠𝑠s5′ , re-
spectively. The H-R/H rheological model of UFRT 
composites formulated in Ref. [1] is fully confirmed.  

- The hypothesis that the rheological properties of 
UFRT composites are described by viscoelastic con-
stants 𝑟𝑟, 𝑇𝑇c of the thermoset matrix was also fully 
confirmed. 
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- The shear creep in the monotropy and transverse 
isotropy planes of UFRT composites, described by 
viscoelastic constants 𝑐𝑐4, 𝑐𝑐5, is dominant. The rein-
forcing fibres slightly reduce long-term creep coef-
ficients 𝑐𝑐4, 𝑐𝑐5 compared to long-term creep coeffi-
cient 𝑐𝑐 of the pure thermoset.  

- Long-term creep coefficient 𝑐𝑐1 is approximately 
3.5% of creep factor 𝑐𝑐4 or 𝑐𝑐5. The elastic fibres are 
very effective at suppressing the viscoelasticity of 
URFT composites under tension/compression in the 
fibre direction. 

CONCLUSIONS 
The study constituted Part 2 of advanced analytical 

modelling of the linear elasticity and viscoelasticity of 
thermosets and unidirectional long glass fibre-reinforced 
thermoset-matrix (UFRT) composites. New rheological 
models (coded H-R/H) for thermosets and UFRT com-
posites, described by the smallest possible number of the 
material constants, were tested by experiment and simu-
lation. The generic function for viscoelastic shear/quasi- 
-shear stresses in thermosets and UFRT composites was 
assumed as the Mittag-Leffler fractional exponential 
function in an integral form. The key modelling tools rel-
ative to UFRT composites were: the modified homoge-
nization theory and VECP. 

The modified homogenization theory for UFRT com-
posites, based on the selected tasks of the linear theory 
of elasticity, was positively validated on the exemplary 
E-glass fibre/vinyl-ester resin composite. The 32-point 
Gauss-Legendre quadrature proved necessary to calcu-
late improper integrals involving a fractional exponential 
generic function. 

The elastic (𝐸𝐸, 𝜈𝜈) and viscoelastic (𝑟𝑟,𝑇𝑇c, 𝑐𝑐) constants 
of the exemplary thermoset (‘Polimal 109’ unsaturated 
polyester resin) that describe the H-R/H rheological 
model in normal conditions were determined with tech-
nical accuracy, based on the experimental unidirectional 
tension creep test. The elastic (𝐸𝐸1,𝐸𝐸2, 𝜈𝜈21, 𝜈𝜈32,𝐺𝐺12) and 
viscoelastic (𝑟𝑟, 𝑇𝑇c,𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5) constants of  the exemplary 
UFRT composite (‘Polimal 109’ unsaturated polyester 
resin matrix reinforced with long E-glass fibres) that de-
scribe the H-R/H model in normal conditions were deter-
mined with technical accuracy. 

Based on the exemplary materials, the following final 
conclusions can be formulated: 
1. The H-R/H rheological model is adequate for thermo-

sets in technically relevant interval 𝑡𝑡 ∈ [10 min,
100000 min]. The shear deformations are viscoelas-
tic but the bulk deformations are elastic. 

2. The H-R/H rheological model is adequate for  
UFRT composites in technically relevant interval  
𝑡𝑡 ∈ [10 min, 100000 min]. The quasi-shear and 
shear deformations are viscoelastic but the quasi-bulk 
deformations are elastic.  

3. Two viscoelastic constants, i.e. fraction 𝑟𝑟 of the vis-
coelasticity generic function, and retardation time 𝑇𝑇c, 

are common to the thermoset matrix and the UFRT 
composite. 

4. Shear creep in the monotropy and transverse isotropy 
planes of UFRT composites is dominant. The elastic 
fibres are very effective at suppressing the viscoelas-
ticity of URFT composites under tension/compres-
sion in the fibre direction. 
The presented series of publications also offers re-

search teams developing the rheology of thermosets and 
thermoset-matrix composites reinforced with stitched 
glass fabrics possible cooperation in the following fields: 
- modified procedures for experimental determining the 

elastic constants of thermosets and UFRT composites; 
- long-term unidirectional tension creep/recovery ex-

perimental tests on selected thermosets, for selected 
stress and temperature levels, with a minimum of  
5 specimens in each case;  

- determination of the elastic and viscoelastic constants 
for selected thermosets, based on relevant experi-
mental tests;  

- experimental validation of the elastic constants pre-
dicted by the modified homogenization theory for  
selected UFRT composites; 

- testing Gauss-Legendre quadratures of very high  
order (𝑛𝑛 ≫ 32); 

- experimental validation of the H-R/K rheological 
model for selected thermosets; 

- experimental validation of the H-R/K rheological 
model for selected UFRT composites; 

- implementation of the H-R/K model into a selected 
CAE system; 

- experimental validation of the H-R/K rheological 
model for selected stitched glass fabric-reinforced 
thermoset-matrix laminates. 
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APPENDIX A. SELECTED FINAL FORMULAS 
FROM REF. [1] 

Shear and bulk modules of a thermoset are defined as 

 𝐺𝐺 = 𝐸𝐸 2(1 + 𝜈𝜈)⁄ ,   𝐵𝐵 = 𝐸𝐸 3(1− 2𝜈𝜈)⁄    (A.1) 

where: 𝐸𝐸, 𝜈𝜈 – elastic constants (Young’s modulus,  
Poisson’s ratio). 
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Conjugated standard constitutive equations of the  
linear elasticity of a thermoset, written in matrix nota-
tion, have the form: 

 𝛆𝛆 = 𝐒𝐒 𝛔𝛔 ,   𝛅𝛅 = 𝑆𝑆s 𝛕𝛕   (A.2) 

where 

𝛆𝛆 = �
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
� ,   𝛅𝛅 = �

𝛿𝛿23
𝛿𝛿13
𝛿𝛿12

� ,   𝛔𝛔 = �
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
� ,   𝛕𝛕 = �

𝜏𝜏23
𝜏𝜏13
𝜏𝜏12

�

𝐒𝐒 = �
𝑆𝑆11 𝑆𝑆12 𝑆𝑆12
𝑆𝑆12 𝑆𝑆11 𝑆𝑆12
𝑆𝑆12 𝑆𝑆12 𝑆𝑆11

�   ,   𝑆𝑆11 = 1 𝐸𝐸⁄  ,   𝑆𝑆12 = −𝜈𝜈 𝐸𝐸⁄  ,    𝑆𝑆s = 1 2𝐺𝐺⁄

   

  (A.3) 

with 𝛿𝛿𝑗𝑗𝑘𝑘 = 𝛾𝛾𝑗𝑗𝑘𝑘 2⁄ , 𝑗𝑗𝑘𝑘 = 23, 13, 12 (𝛾𝛾𝑗𝑗𝑘𝑘 – shear strains). 
Vectors 𝛆𝛆,𝛅𝛅,𝛔𝛔, 𝛕𝛕 represent parts of the strain and stress 
tensors at point (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3), respectively. Matrix 𝐒𝐒 is the 
elastic compliance matrix and coefficient 𝑆𝑆s is the elastic 
shear compliance of a thermoset. Equations (A.2)2 are 
unconjugated. The 𝑥𝑥1,𝑥𝑥2,𝑥𝑥3 Cartesian coordinate sys-
tem is consistent with directions of monotropy (trans-
verse isotropy) of a UFRT composite. 

Unconjugated standard constitutive equations of  
the linear elasticity-viscoelasticity of a thermoset have 
the form: 

 𝛆𝛆s(𝑡𝑡) = 𝑆𝑆s(𝑡𝑡)⊗𝛔𝛔s(𝑡𝑡) ,    𝜀𝜀b(𝑡𝑡) = 𝑆𝑆b 𝜎𝜎b(𝑡𝑡)
𝛅𝛅(𝑡𝑡) = 𝑆𝑆s(𝑡𝑡)⊗𝛕𝛕(𝑡𝑡)

  (A.4) 

for time variable 𝑡𝑡 ≥ 0, with 

𝑆𝑆s(𝑡𝑡) = 𝑆𝑆s�1 + 𝑐𝑐 ∫ 𝛷𝛷(𝑣𝑣) 𝑑𝑑𝑣𝑣𝑡𝑡
0 � ,    𝛷𝛷(𝑡𝑡) = 1

𝑇𝑇c
∫ exp �− 𝑢𝑢𝑡𝑡

𝑇𝑇c
�𝑢𝑢 𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞

0

𝐿𝐿(𝑢𝑢) = sin 𝜋𝜋𝑟𝑟
𝜋𝜋𝑢𝑢

𝑢𝑢𝑟𝑟

1+2𝑢𝑢𝑟𝑟 cos𝜋𝜋𝑟𝑟+𝑢𝑢2𝑟𝑟
 ,    0 < 𝑟𝑟 < 1,   𝑆𝑆b = 1 3𝐵𝐵⁄

   

  (A.5) 

The nomenclature and interpretation are as follows: 
𝐿𝐿(𝑢𝑢) – function creating the fractional exponential func-
tion in an integral form, r – fraction creating the  
fractional exponential function, 𝑇𝑇c – retardation time, 
𝛷𝛷(𝑡𝑡) – generic function for shear stresses (the Mittag-
Leffler fractional exponential function in an integral 
form), �̃�𝑆s(𝑡𝑡) – elastic-viscoelastic shear compliance,  
c – long-term creep coefficient, ⊗ – convolution product  
operator. 

The creep function for a thermoset is described by  
the formula: 

 𝑟𝑟(𝑡𝑡) = ∫ 𝛷𝛷(𝑣𝑣) 𝑑𝑑𝑣𝑣𝑡𝑡
0 = 1− ∫ exp �−𝑢𝑢𝑡𝑡

𝑇𝑇c
�𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞

0  (A.6) 

Functions 𝐿𝐿(𝑢𝑢),𝛷𝛷(𝑡𝑡),𝑟𝑟(𝑡𝑡) have the following pro- 
perties: 

𝐿𝐿(𝑢𝑢) ≥ 0   for   𝑢𝑢 ≥ 0 ,    ∫ 𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞
0 = 1 ,    lim

𝑢𝑢→0+
𝐿𝐿(𝑢𝑢) = ∞

𝛷𝛷(𝑡𝑡) > 0   for   𝑡𝑡 > 0 ,   lim
𝑡𝑡→0+

𝛷𝛷(𝑡𝑡) = ∞ ,    lim
𝑡𝑡→∞

𝛷𝛷(𝑡𝑡) = 0

𝑟𝑟(0) = 0 ,    𝑟𝑟(∞) = lim
𝑡𝑡→∞

φ(𝑡𝑡) = 1

  

  (A.7) 

The elastic-viscoelastic steady-state response in 
strains for a thermoset corresponding to the harmonic 
stress programme is 

𝛆𝛆s∗(𝑡𝑡) = 𝑆𝑆s�1 + 𝑐𝑐 ∫ exp(−i𝜔𝜔𝑣𝑣)Φ(𝑣𝑣) 𝑑𝑑𝑣𝑣∞
0 �𝛔𝛔s∗(𝑡𝑡) = 𝑆𝑆s∗(𝜔𝜔) 𝛔𝛔s∗(𝑡𝑡)  

  (A.8) 

where 

𝑆𝑆s∗(𝜔𝜔) = 𝑆𝑆s [1 + 𝑐𝑐 𝛷𝛷�(i𝜔𝜔)] = 𝑆𝑆s �1 + 𝑐𝑐
1

1 + (i𝜔𝜔𝑇𝑇c)𝑟𝑟� = 𝑆𝑆s′(𝜔𝜔) + i𝑆𝑆s′′(𝜔𝜔)

𝑆𝑆s′(𝜔𝜔) = 𝑆𝑆s �1 + 𝑐𝑐
1 + (𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ )

1 + 2(𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + (𝜔𝜔𝑇𝑇c)2𝑟𝑟�

𝑆𝑆s′′(𝜔𝜔) = −𝑆𝑆s𝑐𝑐
(𝜔𝜔𝑇𝑇c)𝑟𝑟 sin(𝜋𝜋𝑟𝑟 2⁄ )

1 + 2(𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + (𝜔𝜔𝑇𝑇c)2𝑟𝑟

 

  (A.9) 

with the following interpretation and nomenclature: 
𝑆𝑆s∗(𝜔𝜔) – complex shear compliance, 𝑆𝑆s′(𝜔𝜔) – shear stor-
age compliance (real part of the complex shear compli-
ance), 𝑆𝑆s′′(𝜔𝜔) – shear loss compliance (imaginary part  
of the complex shear compliance), 𝜔𝜔 – circular fre-
quency, i – imaginary unit. 

A long-term relaxation coefficient and a relaxation 
time are expressed in terms of constants 𝑐𝑐,𝑇𝑇c, i.e. 

 𝑑𝑑 = 𝑐𝑐
1+𝑐𝑐

,   𝑇𝑇d = 𝑇𝑇c exp�1
𝑟𝑟

ln 1
1+𝑐𝑐

�  (A.10) 

Conjugated standard constitutive equations of the lin-
ear elasticity and viscoelasticity of a thermoset have the 
form 

 𝛆𝛆(𝑡𝑡) = 𝐒𝐒�(𝑡𝑡)⊗𝛔𝛔(𝑡𝑡) ,    𝛅𝛅(𝑡𝑡) = 𝑆𝑆s(𝑡𝑡)⊗𝛕𝛕(𝑡𝑡)  (A.11) 

where 

 𝐒𝐒�(𝑡𝑡) = 𝑆𝑆s(𝑡𝑡) (𝐈𝐈 − 𝐀𝐀) + 𝑆𝑆b 𝐀𝐀   (A.12) 

is the elastic-viscoelastic compliance matrix of a homo-
geneous isotropic material. 

Conjugated standard constitutive equations of the  
linear elasticity of a homogenized UFRT composite are 
written in the form 

 𝛆𝛆 = 𝐒𝐒𝛔𝛔 ,   𝛅𝛅 = {𝐒𝐒}𝛕𝛕    (A.13) 

where 

 𝐒𝐒 = �
𝑆𝑆11 𝑆𝑆12 𝑆𝑆12
𝑆𝑆12 𝑆𝑆22 𝑆𝑆23
𝑆𝑆12 𝑆𝑆23 𝑆𝑆22

�,    {𝐒𝐒} = �
𝑆𝑆𝑠𝑠4 0 0
0 𝑆𝑆𝑠𝑠5 0
0 0 𝑆𝑆𝑠𝑠5

� 

 

   𝑆𝑆11 = 1 𝐸𝐸1⁄ ,    𝑆𝑆22 = 1 𝐸𝐸2⁄ ,   𝑆𝑆12 = −𝜈𝜈21 𝐸𝐸1⁄ ,   𝑆𝑆23 = −𝜈𝜈32 𝐸𝐸2⁄
𝑆𝑆𝑠𝑠4 = 1 2𝐺𝐺23⁄ = 𝑆𝑆22 − 𝑆𝑆23 ,    𝑆𝑆𝑠𝑠5 = 1 2𝐺𝐺12⁄

  (A.14) 

Vectors 𝛔𝛔, 𝛕𝛕, 𝛆𝛆,𝛅𝛅 are defined in Eqns. (A.3)1-4. Matri-
ces 𝐒𝐒, {𝐒𝐒} are elastic compliance matrices corresponding 
to the normal/shear strains for a homogeneous mono-
tropic material. 

Unconjugated standard constitutive equations of the 
linear elasticity of a homogenized UFRT composite have 
the following form: 

 𝛆𝛆s = {𝐒𝐒s}𝛔𝛔s ,    𝛆𝛆b = {𝐒𝐒b}𝛔𝛔b   (A.15) 
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where 
𝛆𝛆s = (𝐈𝐈 − 𝐁𝐁)𝛆𝛆 ,   𝛔𝛔s = (𝐈𝐈 − 𝐀𝐀)𝛔𝛔 ,    𝛆𝛆b = 𝐁𝐁𝛆𝛆 ,    𝛔𝛔b = 𝐀𝐀𝛔𝛔
{𝐒𝐒s} = diag (𝑆𝑆s1, 𝑆𝑆s2, 𝑆𝑆s2)  ,     {𝐒𝐒b} = diag (𝑆𝑆b1, 𝑆𝑆b2, 𝑆𝑆b2)

𝐈𝐈 = diag (1, 1, 1)  ,   𝐀𝐀 = 1
3
�
1 1 𝜆𝜆⁄ 1 𝜆𝜆⁄
𝜆𝜆 1 1
𝜆𝜆 1 1

�  ,   𝐁𝐁 = �
𝐵𝐵11 𝐵𝐵12 𝐵𝐵13
𝐵𝐵21 𝐵𝐵22 𝐵𝐵23
𝐵𝐵31 𝐵𝐵32 𝐵𝐵33

�
  

  (A.16) 

with 

 

𝛆𝛆 = 𝛆𝛆s + 𝛆𝛆b  ,    𝛔𝛔 =  𝛔𝛔s + 𝛔𝛔b
𝑆𝑆s1 = (1 + 𝜈𝜈21𝜆𝜆) 𝐸𝐸1⁄   ,    𝑆𝑆s2 = 𝑆𝑆s4 = 1 2𝐺𝐺23⁄
𝑆𝑆b1 = (1− 2𝜈𝜈21𝜆𝜆) 𝐸𝐸1⁄   ,    𝑆𝑆b2 = 1 3𝐵𝐵2⁄

𝜆𝜆 = 𝜈𝜈12 𝜈𝜈32⁄   ,   𝜈𝜈12 = 𝜈𝜈21 𝐸𝐸2 𝐸𝐸1⁄

  (A.17) 

The following nomenclature and interpretation are in-
troduced: 𝛆𝛆s, 𝛆𝛆b,𝛔𝛔s,𝛔𝛔b – vectors of the elastic quasi-
shear/quasi-bulk strains/stresses in a monotropic mate-
rial, {𝐒𝐒s}, {𝐒𝐒b} – elastic quasi-shear/quasi-bulk compli-
ance matrices describing a monotropic material, 𝐀𝐀,𝐁𝐁 – 
transformation matrices. 

Unconjugated standard constitutive equations of the 
linear elasticity and viscoelasticity of a UFRT composite 
have the following form: 

 
𝛆𝛆s(𝑡𝑡) = �𝐒𝐒�s(𝑡𝑡)�⊗𝛔𝛔s(𝑡𝑡) ,    𝛆𝛆b(𝑡𝑡) = {𝐒𝐒b}𝛔𝛔b(𝑡𝑡)

𝛅𝛅(𝑡𝑡) = �𝐒𝐒�(𝑡𝑡)�⊗ 𝛕𝛕(𝑡𝑡)
  

  (A.18) 

for time variable 𝑡𝑡 ≥ 0, with 

 �𝐒𝐒�s(𝑡𝑡)� = diag�𝑆𝑆s1(𝑡𝑡),𝑆𝑆s4(𝑡𝑡),𝑆𝑆s4(𝑡𝑡)�  ,   

 

 �𝐒𝐒�(𝒕𝒕)� = diag�𝑆𝑆s4(𝑡𝑡),𝑆𝑆s5(𝑡𝑡),𝑆𝑆s5(𝑡𝑡)�

𝑆𝑆s𝑗𝑗(𝑡𝑡) = 𝑆𝑆s𝑗𝑗 �1 + 𝑐𝑐𝑗𝑗 ∫ 𝛷𝛷(𝑣𝑣) 𝑑𝑑𝑣𝑣𝑡𝑡
0 �  ,   𝑗𝑗 = 1, 4, 5

𝛷𝛷(𝑡𝑡) = 1
𝑇𝑇c
∫ exp �−𝑢𝑢𝑡𝑡

𝑇𝑇c
�𝑢𝑢 𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞

0

𝐿𝐿(𝑢𝑢) = sin 𝜋𝜋𝑟𝑟
𝜋𝜋𝑢𝑢

𝑢𝑢𝑟𝑟

1+2𝑢𝑢𝑟𝑟 cos𝜋𝜋𝑟𝑟+𝑢𝑢2𝑟𝑟
 ,    0 < 𝑟𝑟 < 1

  

  (A.19) 

The nomenclature and interpretation are as follows: 
𝐿𝐿(𝑢𝑢) – function defining the Mittag-Leffler fractional 
exponential function in an integral form, r – fraction de-
fining the Mittag-Leffler fractional exponential function, 
𝑇𝑇c – retardation time, 𝛷𝛷(𝑡𝑡) – generic function for shear 
stresses (Mittag-Leffler fractional exponential function), 
�𝐒𝐒�s(𝑡𝑡)� – elastic-viscoelastic quasi-shear compliance 
matrix, �𝐒𝐒�(𝑡𝑡)� – elastic-viscoelastic shear compliance 
matrix, 𝑐𝑐1, 𝑐𝑐4, 𝑐𝑐5 – long-term creep coefficients, ⊗ – con-
volution product operator. 

The first equation contained in matrix equation 
(A.18)1 is 

𝜀𝜀s1(𝑡𝑡) = 𝑆𝑆𝑠𝑠1(𝑡𝑡)⊗𝜎𝜎s1(𝑡𝑡) ,   𝑆𝑆s1(𝑡𝑡) = 𝑆𝑆s1 �1 + 𝑐𝑐1 ∫ 𝛷𝛷(𝑣𝑣) 𝑑𝑑𝑣𝑣𝑡𝑡
0 � 

  (A.20) 

The steady-state (harmonic) elastic-viscoelastic  
response in strain to the harmonic stress programme is 

𝜀𝜀s1∗ (𝑡𝑡) = 𝑆𝑆s1�1 + 𝑐𝑐1 ∫ exp(−i𝜔𝜔𝑣𝑣)Φ(𝑣𝑣) 𝑑𝑑𝑣𝑣∞
0 �𝜎𝜎s1∗ (𝑡𝑡) = 𝑆𝑆s1∗ (𝜔𝜔) 𝜎𝜎s1∗ (𝑡𝑡)  

  (A.21) 

where 

𝑆𝑆s1∗ (𝜔𝜔) = 𝑆𝑆s1 [1 + 𝑐𝑐1 𝛷𝛷�(i𝜔𝜔)] = 𝑆𝑆s1 �1 + 𝑐𝑐1
1

1 + (i𝜔𝜔𝑇𝑇c)𝑟𝑟� 

= 𝑆𝑆s1′ (𝜔𝜔) + i𝑆𝑆s1′′ (𝜔𝜔)

𝑆𝑆s1′ (𝜔𝜔) = 𝑆𝑆s1 �1 + 𝑐𝑐1
1 + (𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ )

1 + 2(𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + (𝜔𝜔𝑇𝑇c)2𝑟𝑟�

𝑆𝑆s1′′ (𝜔𝜔) = −𝑆𝑆s1𝑐𝑐1
(𝜔𝜔𝑇𝑇c)𝑟𝑟 sin(𝜋𝜋𝑟𝑟 2⁄ )

1 + 2(𝜔𝜔𝑇𝑇c)𝑟𝑟 cos(𝜋𝜋𝑟𝑟 2⁄ ) + (𝜔𝜔𝑇𝑇c)2𝑟𝑟

 

  (A.22) 

with the following interpretation and nomenclature: 
𝑆𝑆s1∗ (𝜔𝜔) – first complex quasi-shear compliance,  
𝑆𝑆s1′ (𝜔𝜔) – first quasi-shear storage compliance, 𝑆𝑆s1′′ (𝜔𝜔) – 
first quasi-shear loss compliance. 

Unconjugated inverse constitutive equations of the 
linear elasticity and viscoelasticity of a UFRT composite 
have the following form: 

 
𝛔𝛔s(𝑡𝑡) = �𝐂𝐂�s(𝑡𝑡)�⊗ 𝛆𝛆s(𝑡𝑡) ,    𝛔𝛔b(𝑡𝑡) = {𝐂𝐂b}𝛆𝛆b(𝑡𝑡)

𝛕𝛕(𝑡𝑡) = �𝐂𝐂�(𝑡𝑡)�⊗ 𝛅𝛅(𝑡𝑡)
 (A.23) 

for time variable 𝑡𝑡 ≥ 0, with 
�𝐂𝐂�s(𝑡𝑡)� = diag��̃�𝐶s1(𝑡𝑡), �̃�𝐶s4(𝑡𝑡), �̃�𝐶s4(𝑡𝑡)�   ,    

�𝐂𝐂�(𝒕𝒕)� = diag��̃�𝐶s4(𝑡𝑡), �̃�𝐶s5(𝑡𝑡), �̃�𝐶s5(𝑡𝑡)� 

 

�̃�𝐶s𝑗𝑗(𝑡𝑡) = 𝐶𝐶s𝑗𝑗�1 − 𝑑𝑑𝑗𝑗 ∫ 𝛹𝛹𝑗𝑗(𝑣𝑣) 𝑑𝑑𝑣𝑣𝑡𝑡
0 � ,    𝑗𝑗 = 1, 4, 5

𝛹𝛹𝑗𝑗(𝑡𝑡) = 1
𝑇𝑇𝑑𝑑𝑗𝑗

∫ exp �− 𝑢𝑢𝑡𝑡
𝑇𝑇𝑑𝑑𝑗𝑗
� 𝑢𝑢 𝐿𝐿(𝑢𝑢) 𝑑𝑑𝑢𝑢∞

0   ,   𝑗𝑗 = 1, 4, 5

𝑑𝑑𝑗𝑗 = 𝑐𝑐𝑗𝑗
1+𝑐𝑐𝑗𝑗

  ,   𝑇𝑇𝑑𝑑𝑗𝑗 = 𝑇𝑇c exp �1
𝑟𝑟

ln 1
1+𝑐𝑐𝑗𝑗

�   ,   𝑗𝑗 = 1, 4, 5

  

  (A.24) 

and the following nomenclature and interpretation: 𝑇𝑇𝑑𝑑𝑗𝑗 – 
j-th relaxation time, 𝛹𝛹𝑗𝑗(𝑡𝑡) – j-th shear strain generic 
function, �𝐂𝐂�s(𝑡𝑡)� – elastic-viscoelastic quasi-shear stiff-
ness matrix, �𝐂𝐂�(𝑡𝑡)� – elastic-viscoelastic shear stiffness 
matrix, 𝑑𝑑1,𝑑𝑑4,𝑑𝑑5 – long-term relaxation coefficients. 
Viscoelastic parameters 𝑑𝑑𝑗𝑗 ,𝑇𝑇𝑑𝑑𝑗𝑗 , 𝑗𝑗 = 1, 4, 5, are expres- 
sed in terms of previous viscoelastic parameters 𝑐𝑐𝑗𝑗 ,𝑇𝑇c,
𝑗𝑗 = 1, 4, 5, as specified in Eqns. (A.24)5,6. 
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