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DEFICIENCY-SURPLUS TRANSITION F
IN SEMI-EMPIRICAL FORMULAS F

OF FREELY FALLING CA

A new phenomenological method for composing analytical formulae to describe dynamic systems using the DeSuTra fun

tion as a building block is introduced. Based on heuristic considerations, it is possible to write a correct formula with sev

unknown coefficients. Next, these coefficients are tuned such a way that the result coincides with the experimental data. 

To illustrate the viability of such a method, a simple but not trivial aerodynamic system was chosen: the autorotation of a re

tangular piece of paper that falls in air. Three correction coefficients (diminishers) were introduced to calculate its rotat

frequency. Then a simple expression for the Magnus effect and drag force was used. All the obtained formulae were exper

mentally proved and the coefficients calculated. The conclusions drawn confirm the usefulness of the presented calculation 

procedure for the design of composites with chaotically distributed reinforcements. 
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INTRODUCTION 

General ideas about Deficiency-Surplus Transitio
function (DeSuTra function) 

In nature, in technology, and in society, there are 

numerous process which in some ideal circumstances 

have close to one hundred percent efficiency. However, 

the lack of “something vital”, which can be measured 

by parameter P, leads to a reduction in the efficiency of 

the process, up to complete cessation if 

other hand, an overabundance of this “something vital”,

does not spoil the process. P0 is a bifurcation point, 

described by the general catastrophe theory [1]. A pro

lem also occurs during the design procedure for 

composite materials containing chaotically distributed 

reinforcing components or in highly adva

ites containing areas with unpredictable microstructural 

distortions (for instance stitched fibre reinforced pol

mer laminates [2]).  

An efficiency diminisher is a number between 0 

and 1 that shows how much the efficiency of the pro

ess is smaller than its possible maximum. The depen

ence of process efficiency diminisher 

parameter P can be visualised by in Figure 1.

The process termination point is a mathematical si

gular point described by the catastrophe theory. In 

many systems it looks like a bifurcation point or phase 

transition point.  
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Surplus Transition 

In nature, in technology, and in society, there are 

numerous process which in some ideal circumstances 

dred percent efficiency. However, 

the lack of “something vital”, which can be measured 

, leads to a reduction in the efficiency of 

the process, up to complete cessation if P < P0. On the 

other hand, an overabundance of this “something vital”, 

is a bifurcation point,  

described by the general catastrophe theory [1]. A prob-

lem also occurs during the design procedure for  

composite materials containing chaotically distributed 

reinforcing components or in highly advanced compos-

ites containing areas with unpredictable microstructural 

distortions (for instance stitched fibre reinforced poly-

An efficiency diminisher is a number between 0  

and 1 that shows how much the efficiency of the proc-

ler than its possible maximum. The depend-

ence of process efficiency diminisher E on this vital 

can be visualised by in Figure 1. 

The process termination point is a mathematical sin-

gular point described by the catastrophe theory. In 

many systems it looks like a bifurcation point or phase 

where P0 is the minimal value of P below which the process stops

Fig. 1. Deficit-Surplus Transition (DeSuTra) function

Therefore, in the vicinity of this point, the behaviour 

of the system will be described by an analytical fun

tion containing a square root. T

sharply. On the other side of the graph at large values of 

parameter P, the function tends asymp

The simplest analytical expression that satisfies these 

two criteria would be: 

 1Re −=
P

alE

 if P > P0, or   EP
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below which the process stops 

Surplus Transition (DeSuTra) function  

Therefore, in the vicinity of this point, the behaviour 

of the system will be described by an analytical func-

tion containing a square root. The line here falls 

sharply. On the other side of the graph at large values of 

, the function tends asymptotically to one. 

The simplest analytical expression that satisfies these 
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P = 0 if P < P0   
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In this and all further formulae in this text, we as-

sume that if a negative value appears under the square 

root, the diminisher is simply zero. In other words, we 

consider only the real part of the result and neglect the 

imaginary part. This formula includes also another pa-

rameter, Pt – the “thickness” of the transitional zone.  

It determines that linear expression (P – P0)/Pt inside 

the formula is dimensionless. It can be graphically rep-

resented as the difference between the value of the ar-

gument at which the function reaches 0.707 and the 

value of the argument at which the function reaches 0. 

The goal of our semi empirical method is to find these 

two coefficients, P0 and Pt, experimentally. 
Here are some examples of processes which fit this 

relation: 

- Wheat yield as a function of nitrogen in the soil.  

- The percentage of germs killed by penicillin as  

a function of the dose consumed. 

- The safe speed of a car as a function of road width.  

- Labour productivity as a function of wages. 

- The airplane glide ratio as a function of wing length.  

- The strength of concrete as function of curing time.  

There are certain intuitive rules how to understand if 

a given process can be described by this formula. First 

of all, parameter P must describe something, the  

absence of which is an obstacle, but not something that 

acts as the drive of the process or measure of the proc-

ess. It should also be noted that if in some processes 

obviously P0 = 0, then there is a great probability that 

the process cannot be described by the analytical  

expression mentioned above.  

Now let us consider what happens if the efficiency 

depends on two vital parameters – P and R. In the sim-

plest case, the two efficiency diminishers, EP and ER, 

must be multiplied: E = EP * ER. This is what happens 

when each diminisher acts sequentially and independ-

ently. For example, the efficiency of an electric genera-

tor and the efficiency of a high-voltage transformer 

must simply be multiplied to obtain the total efficiency. 

In this case, the position of the value of one parameter 

does not affect the position of the catastrophe point of 

the other parameter 

1

1
1*

1

1
1*

00

,

+

−

−

+

−

−==

tt

RPRP

R

RR

P

PP
EEE   (2) 

The combined effect of non-energy efficiency fac-

tors is often just like that. Therefore, this formula can 

be regarded as the first hypothesis. Moreover, if it 

works accurately enough, there is no need to look for 

other more complicated formulas. 

APPLING THE METHOD TO TUMBLING CARDS  

The problem of the flight of a rectangle in the air is 

undoubtedly a classical problem. Scientists have repeat-

edly returned to this task [3-8]. It is the most inexpen-

sive object to illustrate the acceptability of our mathe-

matical method in aerodynamics. Air moves around this 

object in such a complex way that is very difficult to 

devise a three-dimensional direct solution of the Na-

vier-Stokes equations. That is why nobody has yet de-

livered simple universal analytical formulas for the 

general case. The movement of tumbling cards has been 

illustrated with a stroboscopic photo in [9].  

To date, despite its seeming simplicity, this task has 

not yet had any full compact or precise formulae based 

on real experimental 3D study. There are some good 

numerical solutions [10], but obtained only in 2D. 

Many scientists have limited their attention to a disk, 

simply because its size is characterized by only one 

number – the diameter. Plus, a disc falls almost  

vertically downwards, not deviating from the vertical 

[9, 11-18]. This reduces the total number of experi-

ments by a factor of ten compared to rectangles, which 

are characterized by two numbers – length and width. 

Nevertheless, rectangles tumble and fly at an angle to 

the vertical much more beautifully and remain in the air 

longer. The study of rectangles provides more opportu-

nities to illustrate our mathematical method. It also 

needs to be noted that other methods might also be  

applied to solve the considered problem [19].  

MATERIALS AND METHODS 

Mathematical approach to obtain some reasonable 
formulae 

The flight of thin rectangles in air fully depends on 

three values: W – width, L – length and Z – the two-

dimensional density of the material. If these three  

values are established, the flight is fully determined. 

Therefore, the following three values are also deter-

mined: f – rate of tumbling, α – angle of deviation  

of falling motion from the vertical, and V/ – total speed 

of declining motion. The speed of setting down will be 

Vdown = V/*cos(α). 

Hence, three functions objectively exist: f(W,L,Z), 

α(W,L,Z), V/ (W,L,Z), which describe such dependences 

that can be found experimentally. Thus, our goal will be 

to find an analytical expression which describes these 

functions as precisely as possible. The main idea is to 

identify several factors of influence and analyse their 

impact one by one. Each factor of influence can be 

tuned by changing some coefficients. The best values 

for the coefficients can be found by experiment.  

Dependence of frequency of rotation  
from total speed 

If we attentively look at the stroboscopic photo  

in Figure 2, it is clear that the maximal rotating rate 

cannot exceed a certain value because its upper edge 

cannot move backwards relative to air. If this maximum  

is achieved, then the angular frequency of rotation  

will be: 
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  fC
W

V
f /

max
=   (3)  

Here V⁄ is speed in the tilted direction, and  

W – width of the rectangle and Cf – an unknown univer-

sal coefficient – Cf  ≈ 2/π.   
Nonetheless the real frequency will be reduced by 

three efficiency diminishers: ERe, El, EA. According to 

our working hypothesis, these diminishers are not  

cumulative, that is why:  

 Alf EЕEC
W

V
f

Re

/

max
=    (4)  

This hypothesis looks to be very reasonable, but 

of course our phenomenological method is not 

strictly mathematical proof. Only an experiment can 

be the criteria for such non trivial systems. The  

experiments described by other authors in [14] and  

in [20] show that the influence of two factors: the  

Reynolds number and the inertia of the falling object 

do not create a remarkable nonlinear cumulative  

effect. In other words, their combined influence can 

be described as the multiplication of two independent 

factors; one of them depends only on the Reynolds 

number and the other depends only on the inertia of 

the falling rigid body. Our own experiments show 

that all other diminishers in the formulae, mentioned 

above, also act as simple diminishers, without any 

remarkable nonlinear cumulative effect.  

Diminisher ERe 

This is the efficiency diminisher which depends on 

the viscosity of the air. It is logical to measure the speed 

of the centre of the strip in Reynolds units and make 

it dimensionless on the basis of Reynolds’ law of simi-

larity. Therefore, we use 
η

ρWV
/

 instead of the speed. 

Thus, using our general theory (1) we obtain: 
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at  
η

ρWV
/

  > Re0   otherwise B = 0    

where: ρ – density of the air, η – viscosity, W – width of 

the rectangle. Re0 and Ret are dimensionless parameters, 

which will be found by experiment later.  

Diminisher El  

This is the efficiency diminisher which depends on 

the length of the rectangular strip. Hence, it describes 

the energy losses on the ends of the strips – boundary 

effect. Two-dimensional models are based on the  

assumption that an rectangle can be made arbitrarily 

long in the horizontal direction. The easiest way to take 

in to account the third dimension is to introduce Bound-

ary Factor El, which takes in to consideration motion 

disrupted by the boundary effect when two ends come 

too close to each other. This effect is a reason why the 

problem is sufficiently three-dimensional, and cannot 

be correctly described as a two-dimensional problem. 

Diminisher El is a DeSuTra function of ratio l = L/W  

     

1

1
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t

l

l

l
W

L
E    (6) 

where l0 and lt are coefficients which determine the rate 
of this dependence.  

E increases asymptotically to its maximal value 1, at 

L/W >> 1 when the influence of the edges becomes neg-

ligible and motion becomes two-dimensional. In prac-

tice, L/W cannot be less than 1 because otherwise the 

length and width will be reversed during flight due to 

instability. However, even a square tumbles quite well. 

This means that singularity l0 lies somewhere between  

0 and 1, but to find it using a simple rectangle is impos-

sible because of instability – a permutation between the 

length and width. Finding the point of singularity is 

only possible by testing special models with stabiliza-

tion. It was done using double connected rectangles.  

 

 
Fig. 2. Two rectangles are connected to avoid permutation between L  

and W 

Diminisher EA  

This is efficiency diminisher is determined by com-

paring the inertial mass of air involved in motion, and 

the inertial mass of the rectangular itself. The first one 

is about W
2
Lρ, and the second is precisely WLZ, where 

Z is the two-dimensional density of thin material 

.)( dZ ρθ −=  Thus, it describes the inertial losses on 

each turn. 

That means that dimensionless parameter A = Z/(Wρ) 

determines the situation. It was remarked during the 

experiments that if Z/(Wρ) < A0 ≈ 0.7, then the motion 

becomes chaotic and no smooth tumbling can be  

observed. In other words, the rectangle must be heavier 

than the air involved in aerodynamic motion, otherwise 

the air takes away too much energy from rotation. 
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Therefore, one more factor should be added to the 

expression for the rotation frequency: 
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This hindering factor is stronger in water than in 

air. By putting all three diminishers together, it is pos-

sible to obtain for rotating frequency f: 
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Please remark that Re0, l0, A0 are transition points 

between tumbling and fluttering or the steady descent 

of falling cards. See [21-23]. 

Use of traditional formula for frontal resistance 

Frontal resistance (drag) FD can be taken as usual:   

 2

/
VLWCF

DD
ρ=    (9) 

CD is a dimensionless parameter, which will be found 

by experiment later. 

Use of traditional formula for Magnus effect 

Nevertheless, to evaluate the force in the direction 

perpendicular to motion, we should compare this object 

with a rotating cylinder, which experiences the Magnus 

effect.  It is known, that the Magnus perpendicular force 

is equal to  Γρ
/

LVF
M

=
, where Γ is the circulation 

of speed for a cylinder with radius r fr
2
)2( πΓ = , 

and thus ρπ
/

2
)2( fLVrF

M
= . On the other hand, for 

the specific geometry of a tumbling rectangle, some 

other coefficients can appear here. Hence, we can 

assume that ρ
/

2
LVWfCF M

M
⋅⋅= , where CM  is an 

unknown coefficient, which depends on geometry but 

must be the same for geometrically similar rectangles. 
Therefore, the Magnus force is:  
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Application of Newton’s laws to this system 

The vector sum of drag force and Magnus force 

should be compensated by gravity force. WLZg, where 

g = 9.8 m/s
2
, and d is the thickness of the rectangle.  

If α is an angle between the inclined direction of motion 

and the vertical, then the force equilibrium in the verti-

cal direction requires: 

 )sin()cos( αα
MD

FFWLZg +=    (11) 

However, the force equilibrium in the horizontal  

direction requires: 

 )sin()cos( αα
DM

FF =     (12) 

which means: 
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               (14) 

The expression in brackets here will not depend on 

size but only on form. The expression under the square 

root depends only on the width. Now let us assemble all 

the previous formulae together. Thus, we get:  

 
)(1

)cos()(
2
α

α

tg
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D
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==   (15) 
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ρ
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From here we will obtain the expression for speed: 

 
4 2

/

)(1

11

αρ tg

Zg

C
V

D +

⋅=    (17) 

but for falling speed  

 

3

4 2
)(1
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
 +⋅= α

ρ
tg

Zg

C
V

D

down
     (18) 

At α→0 – this expression coincides with the result 

received by Changqui in [24] 
ρ

ρθ gd
KV

down

)( −

= . 

where 
D

C

K
1

= , .)( dZ ρθ −=  Actually, all the de-

pendences on the sizes of the rectangle lie only in the 

expression for tg(α).  

It is interesting to remark that squares (L = W) cut 

from the same paper fall approximately at the same 

speed. This occurs because if L = W, spoiling boundary 

factor El goes down to ½, and that is why tg(α) is much 

smaller than 1 and 1
)(1

1

4 2

≈

+ αtg

. 
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Nonetheless, it is not the case for elongated rectan-

gles (L > 2W), which move and rotate with greater ef-

fectiveness - tg(α) > 0.8. For them, the speed of descent 

depends on size and on form, which is very remarkable. 

These equations are easily solved by the method of suc-

cessive approximations. First we have to consider α = 0, 

then solve (17), then (14) and receive a new value for 

α > 0, then (17) again and receive new value for V/,  

then (13) again. It is usually sufficient to make two it-

erations. 

After finding V/ and α,  the rotation rate can be eas-
ily calculated by (8)  and falling speed by (18).  

RESULTS AND DISCUSSION 

Experimental part  

In order to determine the rotational speed of the 

falling card, a camera with fast shooting of 240 

frames per second was used. With this camera, we 

managed to measure the rotational speed of the tum-

bling of a small paper card. The formula proposed 

above for the period of tumbling of a thin card was 

fully confirmed in the range of parameters in which 

the falling was periodic and the axis of rotation was 

horizontal.  

 
TABLE 1. Coefficients determined by processing experimen- 

tal data 

η/ρ g ρ Cf CM CD Re0 Ret l0 lt A0 At 

0,0000148 9.8 1.2 0.3 4 0.5 100 700 0.2 0.2 0.9 0.7 

 
The smallest paper rectangle that we were able to 

cut from paper and to observe its falling speed in the 

air had W = 2.5 mm. The largest rectangle was  

a plastic sheet, 490x170x2 mm in size. They corre-

spond to Reynolds numbers from 170 to 24000. 
 

TABLE 2. Comparison of experimental data and theoretical predictions 

Parameters Experiment Theory 

Surface 

density Z 
Width W Length L 

Rate of tum-

bling    f 

e
r
r
o
r
 

Down 

speed 

e
r
r
o
r
 

tg(α) 

e
r
r
o
r
 Rate of 

tumbling   

f 

Down 

speed 
tg(α) 

0.068 0.0025 0.0025 26.8 1.6         32.1428 0.79852 0.6691 

0.068 0.005 0.005 18.1 1.3         23.3812 0.59222 1.0754 

0.068 0.01 0.01 10.8 2         13.8514 0.4774 1.36907 

0.068 0.02 0.02 6.3 2         7.31887 0.43913 1.48766 

0.068 0.04 0.04 4 2         3.25166 0.52079 1.24884 

0.068 0.08 0.08 unstable         ###### ###### ###### 

0.046 0.0025 0.0025 21.8 6         21.3294 0.72313 0.52279 

0.046 0.0025 0.0075 21.6 5         22.8368 0.70432 0.56467 

0.046 0.005 0.015 18.9 2         18.5721 0.50552 1.0258 

0.046 0.01 0.03 13.3 1         11.1904 0.40284 1.33336 

0.046 0.02 0.06 7.2 1         5.74817 0.38748 1.38768 

0.046 0.02 0.06 7.2 2         5.74817 0.38748 1.38768 

0.437 0.135 0.44 3 0.2 1.5 0.2 2 0.5 3.25325 0.82616 1.94477 

2 0.17 0.492 4.5 0.2 3.7 0.6 1 0.2 5.97558 1.50622 2.21779 

0.5 0.11 0.42 4.6 0.2 2.4 0.5 2 0.5 4.42356 0.82365 2.06217 

0.154 0.005 0.015 25.6 4 1.1 0.3     42.6491 0.6947 1.41635 

0.154 0.01 0.03 21.4 5 2 0.5     24.1571 0.56587 1.71803 

0.154 0.02 0.06 11.5 2 1.6 0.5 1 0.2 12.7912 0.50881 1.88502 

0.154 0.04 0.12 5.9 0.5 1.5 0.3 0.8 0.2 6.38508 0.51042 1.87993 

0.154 0.08 0.24 3.2 0.4 1.2 0.2 0.9 0.2 2.86104 0.62109 1.57805 

0.068 0.0025 0.0075 37.1 5         34.2848 0.76898 0.72271 

0.068 0.005 0.015 26.3 7 1.3 0 1 0.2 24.7198 0.55539 1.16157 

0.068 0.01 0.03 15.9 3 0.9 0.1 2 0.5 14.5802 0.44186 1.47877 

0.068 0.02 0.06 8.3 0.3 0.8 0.2 1.2 0.3 7.69341 0.40476 1.60686 

0.068 0.04 0.12 4.1 0.5 0.9 0.4 0.9 0.2 3.42829 0.48435 1.3489 

0.068 0.08 0.24 Non unstable 1 0.3     ###### ###### ###### 

0.134 0.015 0.075 15           15.5954 0.49288 1.82475 

All values here are in SI. 
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As a result, we were not able to find a proper pre-

cise value for Re0 because the frequency of our cam-

era frame does not allow this. We can only evaluate 

approximately that Re0 = 100. This is close to the re-

sults obtained by Field et al. in [14, 20]. It was 

proven experimentally that the formulae give correct 

results for all such different objects. The tumbling of 

a falling metal plate was also observed in water; nev-

ertheless, because the density of water is much 

greater, diminisher EA mentioned above declines 

much quicker. Actually, only relatively thick sheets 

of heavy metal like cuprum or gold coins tumble in 

water. We did not conduct many experiments in wa-

ter, but it is possible to find such studies in [25-30]. 

Our analytical formula fully coincides with their re-

sults. Therefore, the above formula was also con-

firmed for water. Thus,  the simplest dependence law 

between the size of the rectangle, its rotation period 

and down speed was experimentally proved.  

The above conclusions may also contribute to the 

design of composite materials and multimaterial 

complex composite structures [31-33]. It may signifi-

cantly shorten the design process and eliminate a part 

of preliminary evaluation of the designed structure.  

CONCLUSIONS 

Formulae can be used to calculate the frequency 

and speeds of the tumbling of a falling rectangle. 

They can be used for optimisation or any other pur-

poses. As can be seen from this study, the same for-

mula describing deceleration due to energy losses 

was successfully applied three times for three differ-

ent factors. The deep reason lies in the fact that they 

are all manifestations of the same phenomenon: the 

growth of entropy, and the growth of entropy leads to 

the fact that different objects become almost similar 

and can be described by similar formulas. This fun-

damental property of the Universe suggests that the 

same mathematical formula (1) can become one of 

the building blocks of the mathematical description 

of thousands of other objects in which some irre-

versible processes occur. In aerodynamics, this ap-

proach allows us to receive an answer by eliminating 

the need to solve complex Navier-Stokes equations. 

This cannot be done without experimentation, but 

knowledge of the general form of the analytical solu-

tion will greatly reduce the number of required ex-

periments.  

REFERENCES 

[1] Zeeman E.C., Catastrophe Theory – Selected Papers 1972- 

-1977, Addison-Wesley, Reading, MA 1977. 

[2] Kozioł M., Effect of thread tension on mechanical perform-

ance of stitched glass fibre-reinforced polymer laminates – 

experimental study, Journal of Composite Materials 2013, 

47, 16, 1919-1930, DOI: 10.1177/0021998312452179. 

[3] Jones M.A., Shelley M.J., Falling cards, J. Fluid Mech. 

2005, 540, 393-425 DOI: 10.1017/S0022112005005859. 

[4] Mittal R., Seshadri V., Udaykumar H.S., Flutter, tumble and 

vortex induced autorotation, Theor. Comput. Fluid Dyn. 

2004, 17(3), 165-170, DOI: 10.1007/s00162-003-0101-5. 

[5] Smith A.M.O., On the motion of a tumbling body, Journal 

of the Aeronautical Sciences 1953, 20, 2, 73-84. 

[6] Smith E.H., Autorotating wings: An experimental investiga-

tion, J. Fluid Mech. 1971, 50, 513-534, DOI: 10.1017/ 

s0022112071002738. 

[7] Wang W.B., Hu R.F., Xu S.J., Wu Z.N., Influence of aspect 

ratio on tumbling plates, Journal of Fluid Mechanics 2013, 

DOI: 10.1017/jfm.2013.461. 

[8] Wang Y., Shu C., Teo C.J., Yang L.M., Numerical study on 

the freely falling plate: Effects of density ratio and thick-

ness-to-length ratio editors-pick, Physics of Fluids 2016, 28, 

103603, DOI: 10.1063/1.4963242. 

[9] Heisinger L., Coins falling in water 2013, https://arxiv.org/ 

pdf/1312.2278.pdf. 

[10] Assemat P., Fabre D., Magnaudet J., The onset of unsteadi-

ness of two-dimensional bodies falling or rising in a viscous 

fluid: A linear study, J. Fluid Mech. 2012, 690, 173-202, 

DOI: 10.1017/jfm.2011.419. 

[11] Auguste F., Magnaudet J., Fabre D., Falling styles of disks, 

J. Fluid Mech. 2013, 719, 388-405, DOI: 10.1017/jfm. 

2012.602. 

[12] Chrust M., Bouchet G., Dušek J., Numerical simulation of 

the dynamics of freely falling discs, Phys. Fluids 2013, 

25(4), 044102, DOI: 10.1063/1.4799179. 

[13] Lee C.B., Su Z., Zhong H.J., Chen S.Y., Zhou M.D., Wu 

J.Z., Experimental investigation of freely falling thin disks. 

Part 2. Transition of three-dimensional motion from zigzag 

to spiral, J. Fluid Mech. 2013, 732, 77-104, DOI: 

10.1017/jfm.2013.390. 

[14] Field S.B.M., Klaus M., Moore G., Nori F., Chaotic dynam-

ics of falling disks, Letters of Nature 1997, 

http://www.nature.com/nature/journal/v388/n6639/full/3882

52a0.html. 

[15] Vincent L., Shambaugh W.S., Kanso E., Holes stabilize 

freely falling coins, J. Fluid Mech. 2016, 801, 250-259, 

DOI: 10.1017/jfm.2016.432. 

[16] Fernando V., Caetano R., Calculation of dynamic behaviour 

of falling disc or plate in fluid 2010, https://fenix.tecnico. 

ulisboa.pt/downloadFile/395142133553/resumo.pdf. 

[17] Zhong H.J., Lee C.B., Su Z., Chen S.Y., Zhou M.D., Wu 

J.Z., Experimental investigation of freely falling thin disks. 

I. The flow structures and Reynolds number effects on the 

zigzag motion, J. Fluid Mech. 2013, 716, 228-250, DOI: 

10.1017/jfm.2012.543. 

[18] Zhong H., Chen S.Y., Lee C., Experimental study of freely 

falling thin disks: Transition from planar zigzag to spiral, 

Phys. Fluids 2011, 23, 011702, DOI: 10.1063/1.3541844. 

[19] Chatys R., Application of the Markov chain theory in esti-

mating the strength of fiber-layered composite structures 

with regard to manufacturing aspects, Advances in Science 

and Technology Research Journal 2020, 14 (40), 1-8. 

[20] Iversen J.D., Autorotation flat-plate wings: The effect  

of the moment of inertia, geometry and Reynolds number,  

J. Fluid Mech. 1979, 92, 327-348, DOI: 10.1017/ 

s0022112079000641. 

[21] Andersen A., Pesavento U., Wang Z.J., Analysis of transi-

tions between fluttering, tumbling and steady descent of fal-

ling cards, J. Fluid Mech. 2005, 541, 91-104, DOI: 

10.1017/S0022112005005847. 



V. Vorohobovs, M. Kleinhofs 

Composites Theory and Practice  22: 2 (2022)  All rights reserved 

98 

[22] Andersen A., Pesavento U., Wang Z. J., Unsteady aerody-

namics of fluttering and tumbling plates, J. Fluid Mech. 

2005, 541, 65-90, DOI: 10.1017/S002211200500594X. 

[23] Belmonte A., Eisenberg H., Moses E., From flutter to tum-

ble: Inertial drag and froude similarity in falling paper, 

Phys. Rev. Lett. 1998, 81(2), 345-348, DOI: 10.1103/ 

physrevlett.81.345. 

[24] Changqui J., Numerical study of unsteady aerodynamic  

of falling plate, http://www.math.ust.hk/~makxu/PAPER/ 

CiCP-Jin-Xu.pdf. 

[25] Bonisch S., Heuveline V., On the numerical simulation of 

the unsteady free fall of a solid in fluid. I. The Newtonian 

case, Comput. Fluids 2007, 36(9), 1434-1445, DOI: 

10.1016/j.compfluid.2007.01.010. 

[26] Ern P., Risso F., Fabre, D., Magnaudet J., Wake-induced 

oscillatory paths of bodies freely rising or falling in fluids, 

Annu. Rev. Fluid Mech. 2012, 44(44), 97-121, DOI: 

10.1146/annurev-fluid-120710-101250. 

[27] Maxwell J.C., Niven W.D., Maxwell J.C., On a particular 

case of the descent of a heavy body in a resisting medium, 

Cambridge University Press, 1853. 

[28] Pesavento U., Wang Z.J., Falling Paper: Navier-Stokes solu-

tions, model of fluid forces, and center of mass elevation, 

Phys. Rev. Lett. 2004, 93(14), 144501, DOI: 10.1103/ 

physrevlett.93.144501. 

[29] Field S.B., Klaus M., Moore M.G., Nori F., Chaotic dynam-

ics of falling disks, Nature 1997, 388(6639), 252-254 DOI: 

10.1038/40817. 

[30] Mahadevan L., Tumbling cards, Physics Fluid 1999, https:// 

www.seas.harvard.edu/softmat/downloads/pre2000-05.pdf. 

[31] Toroń B., Szperlich P., Kozioł M., SbSI composites based 

on epoxy resin and cellulose for energy harvesting and sen-

sors – the influence of SBSI nanowires conglomeration on 

piezoelectric properties, Materials 2020, 13(4), 902, DOI: 

10.3390/ma13040902. 

[32] Chatys, R., Orzechowski, T., Surface extension in layered 

structures with the use of metal meshes for heat-transfer en-

hancement, Mechanics of Composite Materials 2004, 40(2), 

159-168. 

[33] Olesik P., Godzierz M., Kozioł M., Preliminary characteri-

zation of movel LDPE-Based wear-resistant composite suit-

able for FDM 3D printing, Materials 2019, 12, 2520, DOI: 

10.3390/ma12162520. 

 

 


