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MATHEMATICAL MODEL OF MODIFIED CLASSICAL LAMINATION THEORY 

FOR FOAM CORE SANDWICH COMPOSITES 

Elastic properties are important quantities in the modelling and analysis of sandwich composite structures. The stability 

of sandwich composites mainly depends on their elastic properties, which in turn depend on the elastic properties of its con-

stituents namely, the core and face skin. Several models have been proposed to predict the elastic constants of core materials 

such as honeycomb and foam. A foam core may be open-cell foam or closed-cell foam.  The present work is focused on  

the hexagonal cells of a honeycomb grid core and closed-cell polymer syntactic foam core. The honeycomb is considered to be 

orthotropic with nine independent elastic properties. However, the overall structural performance of the honeycomb core is 

mainly influenced only by out-of-plane elastic properties. On the other hand, the syntactic foam is considered to beisotropic 

with two independent elastic constants namely, the modulus of elasticity and Poisson’s ratio. The face skin material may be 

isotropic with two independent elastic constants or orthotropic with nine elastic constants under three-dimensional loading. 

The present work is focused on predicting the elastic properties of a honeycomb core, syntactic foam and a glass/epoxy  

composite using existing theoretical models. Thereafter, the elastic properties of the syntactic foam and glass/epoxy composite 

are later used to establish the elastic constants for syntactic foam core sandwich composites using modified classical lamina-

tion theory (MCLT). The results reveal that the reviewed theoretical models for the honeycomb core, syntactic foam, fiber- 

-reinforced polymeric (FRP) glass/epoxy face skins and sandwich composites are validated by the experimental results.  

Keywords: honeycomb grid, syntactic foam, FRP, sandwich composite 

 

INTRODUCTION 
 

Elastic properties are important quantities in the 

modelling and analysis of sandwich structures. The sta-

bility of sandwich composites mainly depends on its 

elastic properties, which in turn depend on the elastic 

properties of its constituents namely, the core and face 

skin. Several models have been proposed to predict the 

elastic constants of core materials such as honeycomb 

and syntactic foam. The honeycomb is considered to be 

orthotropic with nine independent elastic properties. 

Nevertheless, the overall structural performance of the 

honeycomb core is mainly influenced only by out-of-

plane elastic properties. On the other hand, the syntactic 

foam is considered to beisotropic with two independent 

elastic constants namely, the modulus of elasticity and 

Poisson’s ratio. The face skin material may be isotropic 

(aluminum, titanium, copper-nickel etc.) with two  

independent elastic constants or orthotropic (fiber- 

-reinforced polymer composites) with nine elastic con-

stants under three-dimensional loading. In the present 

work, it is worthwhile highlighting suitable theoretical 

approaches like Gibson and Ashby’s approach for pre-

dicting the elastic properties of a hexagonal honeycomb 

core grid structure, Porfiri and Gupta’s approach for 

evaluating the elastic properties of hollow microspheres 

embedded in syntactic foam and the mechanics of mate-

rial approach for assessing the elastic properties of  

fiber-reinforced polymer (FRP) composites. The pre-

sent work gives a review of these theoretical models, 

and focuses on including these approaches to build  

a mathematical model of modified classical lamination 

theory regarding prediction of the elastic properties of 

syntactic foam core sandwich composites and their  

experimental validation. 

GIBSON AND ASHBY’S APPROACH  

FOR HONEYCOMB CORE 

Gibson and Ashby [1] consider the honeycomb core 

shown in Figure 1 to bean orthotropic material with 

nine elastic constants namely, Young’s moduli Exx, Eyy, 

Ezz in the X, Y and Z directions, respectively, shear 

moduli Gxy, Gyz, Gzx in the XY, YZ and ZX planes, re-

spectively, and Poisson’s ratios υxy, υyz, υzx. in the XY, 

YZ and ZX planes, respectively. Nonetheless, Schwing-

shackl et al. [2] reported that for a honeycomb core, the 

elastic properties that govern structural sturdiness are 

Ezz, Gxz and Gyz (out-of-plane properties). Hence, these 
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properties were evaluated using the Gibson and Ashby 

model. 
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Fig. 1. Typical hexagonal honeycomb core 

Figure 2 shows a typical honeycomb cell structure. 

The density of the honeycomb core depends on its ge-

ometry and the density of its material. Similarly, the 

elastic property of a honeycomb core is a function of its 

geometry and the elastic properties of the material used 

to fabricate the honeycomb core. 
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Fig. 2. Typical honeycomb cell structure: a) honeycomb cell, b) geome-

try of honeycomb cell 

In Figure 2b, l and h are the length and edges of the 

hexagon, c (=l√3) is the cell size, b is the height of the 
honeycomb core (or thickness of the honeycomb core), 

t is the thickness of the face of the honeycomb and θ is 
the semi-angle between two faces of the honeycomb.  

It should be noted that for a regular hexagon, h = l, 

θ = 30°. The geometric details, density (ρpaper) and elas-
tic properties (Epaper and Gpaper) of the honeycomb ma-

terial i.e. Nomex
®
paper of cell size 20 mm (N20) and 

kraft paper of cell sizes 20 mm (K20), 15 mm (K15), 

10 mm (K10) and 5mm(K5) are presented in Table 1. 
 

 
TABLE 1. Geometric details, density and elastic properties of 

honeycomb material 

Parameters 

Nomex 

paper 
Kraft paper 

N20 K20 K15 K10 K5 

h [mm] 11.5 11.5 8.6 5.7 2.8 

l [mm] 11.5 11.5 8.6 5.7 2.8 

ρpaper [kg/m
3] 724  690 

Epaper [GPa] 3.4  3 

Gpaper [GPa] 2.38  2.1 

θ, degrees 30° 

T  [mm] 0.13 

B [mm] 12.5 

According to Gibson and Ashby, the density and 

out-of-plane compression modulus (Ezz) can be deter-

mined from Equations (1) and (2), respectively.  

The out-of-plane shear moduli, Gxz and Gyz can be  

determined by Equations (3) and (4), respectively.  

The calculated values of these properties are presented 

in Table 2. 
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where Gxz_upper and Gxz_lower are the upper boundary and 

lower boundary shear moduli in the XZ plane of the 

honeycomb core and are obtained from Equations (5) 

and (6), respectively. 
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TABLE 2. Theoretically predicted properties of resin impreg-

nated paper honeycomb core 

Samples 

Density 

ρ 

[kg/m3] 

(Eq. (1)) 

Compression 

modulus 

Ezz [MPa] 

(Eq. (2)) 

Shear 

modulus 

Gyz_ 

[MPa] 

(Eq. (3)) 

Shear 

modulus 

Gxz 

[MPa] 

(Eq. (4)) 

N20 12.54 58.93 36.92 15.47 

K20 11.96 52 32.57 13.65 

K15 15.94 69.33 39.40 18.20 

K10 23.92 104 53.05 27.30 

K5 47.84 208 94 54.60 

 
The deviations between the theoretically predicted 

and experimentally determined values of the density  

and compression modulus as found by Amith Kumar SJ  
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et al. [3] are given in Table 3. There may be deviation 

between the experimental and theoretical results be-

cause of the variation in the hexagonal shapes of the 

honeycomb cells in the core and non-uniform coating of 

resin during impregnation. There is no ASTM standard 

prescribed for the experimental evaluation of out-of-

plane shear modulus.  

 
TABLE 3. Deviation between theoretical and experimental val-

ues of density and compressive modulus for honey-

comb core grid structure 

Samples 
Deviation 

in density ρ [%] 

Deviation 

in compression modulus  

Ezz [%] 

N20 4.3 15.6 

K20 17 2.5 

K15 12.9 9 

K10 0.3 8.3 

K5 12.8 7.1 

PORFIRI AND GUPTA’S APPROACH  

FOR SYNTACTIC FOAM 

The elastic properties of fiber-reinforced poly- 

meric composites have been predicted using various  

approaches such as the mechanics of material approach 

[4], numerical approach [5, 6], self-consistent field  

approach [7, 8], variational approach [9, 10], semi- 

empirical approach [11] and the differential scheme  

[12-16]. Out of these approaches, differential appro-

aches were considered for the development of theoreti-

cal models for particulate composites. In the present 

investigation, Porfiri and Gupta’s [13, 17] coupled 

nonlinear differential Equations (7) and (8) were used 

for the theoretical prediction of the Young’s modulus 

and Poisson’s ratio of syntactic foams (a particulate 

composite), as this model considers the effect of wall 

thickness of the hollow microspheres (dry fly ash ceno-

spheres) present in the foam.  
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where fE and fυ are real functions defined for the 

Young’s modulus and Poisson’s ratio of the syntactic 

foam [13, 17], Eceno and υceno are the Young’s modulus 

and Poisson’s ratio of the dry fly ash cenospheres, re-

spectively. Vceno and Vceno(max) are the volume fraction of 

the dry fly ash cenospheres and the maximum possible 

volume fraction (packing limit) of cenospheres in the 

syntactic foam composite, respectively; η is the radius 

ratio of the cenospheres (the ratio of the inner to outer 

radius). Equations (7) and (8) can be integrated to de-

termine the Young’s modulus and Poisson’s ratio of 

syntactic foam core composites using the initial condi-

tions E = Em and υ = υm as Vceno = 0, where Em and  

υm are the Young’s modulus and Poisson’s ratio of the 

matrix (phenolic resin) material, respectively. Extensive 

experimentation has been conducted to determine the 

maximum packing limit (maximum possible volume 

fraction) of dry fly ash cenospheres in the phenolic 

resin matrix. It was observed that the maximum packing 

factor of cenospheres solely depends on their size.  

For monosized cenospheres, a packing factor up to 60% 

for random loose packing and body centered cubic 

packing, 63.7% for random close packing, 52.36% for 

simple cubic packing, 74.05% for face centered cubic 

packing and hexagonal cubic packing can be achieved. 

However, in the present investigation, cenospheres of 

different sizes (a mean diameter 150 microns) were 

used as the filler for the syntactic foam for which  

a maximum packing factor of 90% was achieved. It was 

observed that the threshold cenosphere volume fraction 

in syntactic foam is 72%, beyond which the binding 

ability of the phenolic resin matrix decreases. Table 4 

presents the properties of the dry fly ash cenospheres, 

phenolic resin and their proportions considered for 

evaluating the elastic properties of syntactic foam.  

 
TABLE 4. Properties of syntactic foam constituents and their 

values 

Component Property Symbol Unit Value 

Dry fly ash 

cenospheres 

Young’s modulus  Eceno GPa 17 

Poisson’s ratio υceno --- 0.21 

Density ρceno kg/m3
 450 

Volume fraction Vceno --- 0.7272 

Maximum packing 
factor 

Vceno(max) --- 0.9 

Radius ratio η --- 0.9 

Phenolic 

resin matrix 

Young’s modulus Em GPa 2.51 

Poisson’s ratio υm --- 0.35 

Density ρm kg/m3
 1200 

Volume fraction Vm --- 0.2727 

 

The theoretically predicted Young’s modulus (Ec) 

and Poisson’s ratio (υc) of the syntactic foam composite 

were found to be 1.99 GPa and 0.25 GPa, respectively. 

Since syntactic foam is considered an isotropic mate-

rial, its shear modulus was evaluated by means of Equa-

tion (9) and was found to be 0.796 GPa. The density 

(ρc) of the syntactic foam was determined by the simple 

rule of mixtures using Equation (10) and was found to 

be 654.54 kg/m
3
. These values agree well with experi-

mental values reported by Amith Kumar S J et al. [3]. 
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whereρceno, ρm, Mceno, Mm are the density of the dry fly 

ash cenospheres, density of the matrix (phenolic resin), 

mass fraction of the dry fly ash cenospheres and mass 

fraction of the matrix (phenolic resin), respectively. 

MECHANICS OF MATERIAL APPROACH  

FOR ORTHOTROPIC FACE SKINS 

By using rule of mixture relationships from the me-

chanics of materials approach, it is possible to predict 

the elastic properties of the E-glass/epoxy composite. 

For a unidirectional E-glass/epoxy composite, the longi-

tudinal Young’s modulus (El), transverse Young’s 

modulus (Et), and Poisson’s ratio (υlt) were calculated 

using Equations (11), (12) and (13), respectively.  

 l f f m mE E V E V= +
 (11) 

 f m

f m m f

t

E E
E

E V E V
=

+

 (12) 

  

 lt f f m mV Vυ υ υ= +
 (13) 

where Ef and Em are the Young’s modulus of the fiber 

(E-glass fiber) and the matrix (epoxy), respectively; υf 

and υm are the Poisson’s ratios of the E-glass fiber and 

epoxy, respectively; Vf  and Vm are the volume fraction 

of the E-glass fiber and epoxy, respectively. 

The in-plane shear modulus (Glt) was determined by 

the rule of mixtures using Equation (14) and the Halpin- 

-Tsai semi-empirical relation using Equation (15).  

The interlaminar shear modulus (Glz) was also evalu-

ated by the Tsai and Hahn semi-empirical stress- 

-partitioning parameter using Equation (16). 

 

f

f

t

m m f

l

mG G
G

G V G V
=

+
 

(14)

 

 

(1 )G

(1 )

f f m m

lt

m f f m

m

V V G
G

V G V G
G=

+ +

+ +
 

(15)

 

 

(1 )

(1 )

f lz f

lz

m
lz f f

m

f

V n V
G

G
n V

G

V
G

+ −

 
− + 



=




 (16) 

where   

( )

3 4

4 1

m
m

f

lz

m

n

G

G
υ

υ

 
− +   

 =
−

 

From the values of the elastic properties determined 

for unidirectional plies of the E-glass/epoxy composite 

and also by incorporating factor K defined in Equation 

(17), it is possible to predict the Young’s moduli (Efs) of 

the 0°/90° woven E-glass fabric/epoxy composite face 

skin in the warp (E11) and weft (E22) directions using 

Equations (18) and (19), respectively, and Poisson’s 

ratio (υ12) using Equation (20) [18]. 
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where N1 and N2 are the numbers of yarns in the warp 

and weft direction. Since E-glass fabric is balanced, the 

numbers of yarns in the warp and weft directions are 

equal (i.e. K = 0.5). 
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It can be noted that for woven fabric, υ12 = υ21.  

The density, volume fractions and elastic properties of 

the constituent materials of the E-glass/epoxy compos-

ite are displayed in Table 5. The elastic properties of the  

E-glass/epoxy composite face skin as predicted by  

the aforementioned approach are compared with the  

experimental values in Table 6. 

 

TABLE 5. Properties of constituent materials of E-glass/epoxy 

composites 

Component Property Symbol Unit Value 

E-glass fiber Young’s 
modulus 

Ef GPa 72.4 

Poisson’s ratio υf --- 0.22 

Shear modulus Gf GPa 29.6 

Density ρf kg/m3
 2500 

Volume fraction Vf --- 0.324 

Epoxy resin 

matrix 

Young’s 
modulus 

Em GPa 2.75 

Poison’s ratio υm --- 0.38 

Shear modulus Gm  GPa 0.99 

Density ρm kg/m3
 1200 

Volume fraction Vm --- 0.676 

 
TABLE 6. Elasticity properties of E-glass/epoxy face skin 

Property Symbol Unit Theo-

retical 

Experi-

mental 

%  

Deviation 

Longitudinal 
Young’s 

modulus 

E11 GPa 14.655 14.39 1.8 

Transverse 
Young’s 

modulus 

E22 GPa 14.655 14.39 1.8 

In-plane  

Poisson’s ratio 
υ12 = υ21 --- 0.088 0.086 2.3 

In-plane shear 
modulus 

G12 GPa 1.862 1.83 1.7 

Interlaminar 
shear modulus 

G13 = G23 GPa 1.766 ---- ---- 
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MODIFIED CLASSICAL LAMINATION THEORY 

FOR SANDWICH COMPOSITE 

Depending on the geometry (aspect ratio, core 

thickness), constituent material properties and the type 

of loading, a sandwich composite panel can be analyzed 

using classical lamination theory by including the 

transverse shear effects [19]. Figure 3 shows a typical 

sandwich composite panel. This sandwich panel can be 

treated as a three-ply laminate consisting of a core and 

two face skins. 

 

t
t

t

s

f

c

 
Fig. 3. Typical sandwich composite 

If the two face sheets are identical in thickness and 

properties, the laminate is symmetric, that is, Bij = 0.  

The in-plane extensional sandwich panel stiffness was 

determined by means of Equation (21). 

 2ij ij f ij cf c
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 (21) 

where 
ij f

Q   is the reduced stiffness matrix of the  

E-glass/epoxy composite face skins and was determined 

using Equation (22). 
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For an isotropic core material, the elements of re-

duced stiffness matrix ij
c

Q   are determined using Equa-

tion (23).  
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Furthermore, the transverse shear stiffness [A44], 

[A55] for sandwich composites with an orthotropic  

E-glass/epoxy face skin and isotropic syntactic foam 

core were determined by means of Equation (24). 

( )44 23
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( )55 13
2
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where E11, E22, E12, υ12, υ21, G12, G13 and G23 are the 

elastic properties of the woven E-glass/epoxy compos-

ite laminate. Ec, υc and Gc are the elastic properties of 

the syntactic foam core. The elastic properties of sand-

wich composite (SF) with a core of syntactic foam and 

face skins of E-glass/epoxy composite laminate as  

a function of laminate extensional stiffness can be  

determined using Equations (25)-(31). The theoretically 

predicted and experimentally evaluated values of  

the elastic properties for sandwich composite (SF) are  

compared in Table 7, along with the percentage devia-

tion. 
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Transverse Young’s modulus  
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where A11, A22, A12 and A66 are the elements of the  

extensional stiffness matrix Aij.  
  

(24) 
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TABLE 7. Elastic properties of sandwich composite (SF) 

Elastic  

properties 
Symbol Unit Theoretical 

Experi-

mental 

%  

Deviation 

Longitudinal 
Young’s 
modulus 

(Ex)s GPa 4.469 4.38 1.9 

Transverse 
Young’s 

modulus 

(Ey)s GPa 4.469 4.38 1.9 

Major  
Poisson’s ratio 

(υxy)s --- 0.148 ---- --- 

Minor  
Poisson’s ratio 

(υyx)s --- 0.148 ---- --- 

In-plane shear 
modulus 

(Gxy)s GPa 1.0023 0.961 4.1 

Transverse 
shear modulus 

(Gyz)s GPa 0.9838 1.035 5.2 

Transverse 
shear modulus 

(Gxz)s GPa 0.9838 1.035 5.2 

CONCLUSIONS 

The density and elastic properties of the constituent 

materials required for the construction of sandwich 

composites and the sandwich composite as a whole 

were theoretically predicted using well-accepted theo-

retical models. Based on the results, the following im-

portant conclusions were drawn, 

1. The theoretically predicted out-of-plane(flatwise) 
compressive modulus (Ezz) and density ( RIPH

ρ ) of  

a resin impregnated paper honeycomb (RIPH) core 

structure using Gibson and Ashby’s approach were 

found to be in good agreement with the experimen-

tally determined values. 

2. The theoretically predicted tensile modulus and 
Poisson’s ratio of syntactic foam using Porfiri and 

Gupta’s differential scheme approach were found to 

be in good agreement with the experimentally de-

termined values. 

3. The in-plane elastic properties of woven E-glass/ 
epoxy composite face skins obtained utilizing the 

mechanics of materials approach (rule of mixtures) 

conform with the experimental values.  

4. The elastic properties of sandwich composites (SF) 
determined with the modified classical lamination 

theory agree well with those obtained by experimen-

tation.  
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