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Stiffness characteristics are often decisive in the choice of material for structural parts. At the same time, the 
process of their determination for anisotropic materials does not fully satisfy the requirements in terms of reliability 
and reproducibility. This work is devoted to the development of an approach for determining the moduli of elasticity. 
An analysis of the Timoshenko approaches developed to estimate the shear component of deflection in transverse bend-
ing is presented. The drawbacks preventing their use as a basis for modern methods of determining the elastic compo-
nents of structural materials are noted. An approach for determining the elastic moduli is proposed, the basis of which 
are the maximum values of deflections and angles of rotation of the cross-sections of a specimen under three-point 
transverse bending. The relationship between angular and linear displacements under the considered type of loading 
is established, which allows stable and reliable values of elasticity moduli to be obtained from the data of angular 
displacements. The acceptability of the proposed approach for determining the elastic moduli of both isotropic mate-
rials and composites is shown. 
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INTRODUCTION 
 

The development of new composite materials 
and the study of their properties contribute to the 
growth of unique features of these materials com-
pared to traditional ones. This factor leads to the 
rapid expansion of their use in various branches of 
science and technology. They have become espe-
cially attractive in aerospace and shipbuilding in-
dustries, which impose high requirements to the 
reliability assessment of structural elements made 
of them. This is primarily determined by the accu-
racy and reliability of determining certain proper-
ties of these materials. Thus, for structural parts 
made of composite materials, the most important 
of these properties are the elastic moduli. They are 

among the main characteristics necessary to assess 
the possibility of using structural materials in var-
ious industries. Therefore, the methods of deter-
mining the noted characteristics should not cause 
any doubt in the reliability, stability or reproduci-
bility of their values. However, the real situation 
in this matter contradicts this condition.  

Firstly, the developed analytical methods 
based on the elastic properties of the reinforcing 
fibres, their arrangement and the elastic properties 
of the matrix give a wide range of elastic modulus 
values. The Voigt method shows the highest val-
ues and the Reiss method the lowest. Detailed 
analyses of these methods are presented in [1-4]. 
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Some of them are rather cumbersome and incon-
venient for practical implementation. 

Therefore, their experimental evaluation does 
not yet meet the requirements. Despite the fact that 
many years have passed since the advent of com-
posite materials, to date the main most reliable ex-
perimental method for determining the moduli of 
elasticity is the tensile test method for isotropic 
materials. The method is standardised [5-7]. These 
standards are used for all types of composite ma-
terials, regardless of their reinforcement structure, 
without sufficient justification or evidence of their 
acceptability. The main disadvantages of the noted 
standards are the general approach to the determi-
nation of elastic moduli of both isotropic and com-
posite materials, as well as the high requirements 
for their manufacture and relatively labour-inten-
sive process of testing. The process of bending 
specimen testing is therefore receiving increasing 
attention. 

STATE OF THE ART AND PROBLEM STATE-
MENT 

The issues related to determining the elasticity 
moduli of composite materials under bending are 
considered in a number of works. The main atten-
tion in them is paid to evaluation of the influence 
of various factors on the accuracy of deflection es-

timation and its components, as well as to the es-
timation of real values of composite material elas-
tic moduli [8-11]. Therefore, some of the stand-
ards for the determination of elastic moduli from 
three-point bending experiments have been devel-
oped with these factors in mind, e.g. [12-14]. The 
main requirement for their use is strict control over 
the accuracy of specimen manufacture, the estab-
lished value of the ratio of specimen length to 
specimen thickness, l/h, and consideration of the 
established values of relative strains. The deter-
mined value of the apparent modulus of elasticity 
in bending, Eb, depends significantly on the ratio 
l/h, especially when l/h ≤ 25 [15]. Nevertheless, 
the relationship between Eb and the real modulus 
of elasticity of the material, E, at different values 
of l/h has not yet been established by anyone. The 
possibility of determining the real value of E 
(based on test data) at small values of l/h is cur-
rently not available at all. The values of the moduli 
of elasticity for two types of structural materials, 
calculated using the usual equation [9]: 

𝐸𝐸𝑏𝑏 =
𝑃𝑃�𝑙𝑙 ℎ� �

3

4𝑏𝑏𝑏𝑏
   (1) 

are presented in Table 1. Hereinafter: P is the force 
applied to the specimen in the centre of the span; 
b is the width of the specimen, y is the deflection 
of the specimen in the middle of the span. 

 

TABLE 1. Dependence of modulus of elasticity in three-point bending of structural materials on change in l/h and P 

Steel Boron plastic 

l/h P, KN уe, mm Eb , GPa Eb /E+ l/h P, KN уe , mm Eb , GPa Eb / E+ 

40 0.300 1.334 211.659 1.001 50 0.072 0.731 150.799 1.010 

30 0.430 0.778 219.304 1.036 30 0.206 0.550 123.860 0.830 

20 1.276 0.782 191.847 0.907 25 0.308 0.519 114.447 0.767 

10 3.000 0.247 178.503 0.844 15 0.274 0.186 60.890 0.408 

Note: ye is the deflection measured experimentally on the bottom surface of the specimen under the point of load application; tensile 
modulus of elasticity for steel E+ = 211.520 GPa; for boron plastic E+ = 149.176 GPa. 

 

The y values were determined on the linear 
part of the P-y dependence, as it is stipulated by 
the current standards. The data given in the table 
show that bending tests of both isotropic and com-
posite materials allow reliable values of the mod-
ulus of elasticity to be obtained only at a set value 

l/h, not less than 40. Reducing this value leads to 
a difference between the determined elastic mod-
ulus values and those obtained from tensile tests. 
This makes this method inefficient because of the 
impossibility to use the results obtained at l/h < 40.  
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It is obvious that the modernization of stand-
ards and tightening of requirements for sample 
preparation have not brought about any significant 
progress in achieving the set goal. As before, as-
sessment of the deflection shift is carried out using 
the Timoshenko equation: 

1
𝐸𝐸𝑏𝑏

= 1
𝐸𝐸𝑥𝑥

+ 1,2
𝐺𝐺
�ℎ
𝑙𝑙
�
2
   (2) 

It is currently employed in many works as  
a basis for studying the components of maximum 
deflection and its shear component. For this pur-
pose, a term is added to this dependence, taking 
into account the necessary factor. An example can 
be found in works [16, 17]. In them, the same term 
is added to the main dependence, taking into ac-
count local deformation effects. Let us consider 
the role of the additional term in solving the prob-
lem using the example of [16]. The hypothesis 
adopted in this case is clearly shown in the figure 
in [16]. Its essence is that when loading a sample 
for three-point bending, the maximum deflection 
under the point of applying the load consists of in-
dividual components (from bending, shear, and lo-
cal deformations). The latter consist of compo-
nents from supports and from the applied load. 
These two components have constant values that 
are distributed throughout the span. The compo-
nents of deflection from bending and from shear 
have the same curve character with a minimum 
value at the supports and a maximum under the 
point of application of the load. The numerical val-
ues of these deflection components are not pre-
sented in the work. The ratios of local deformation 
effects to deflection from bending, depending on 
parameter l/h, are presented in the figure for three 
types of CMs. These data show that the maximum 
value of the local component with respect to the 
bending deflection component for unidirectional 
and woven CFRP, at l/h ≥15, does not exceed 
2.5% and 1.0%, respectively, while for woven 
FRP, at l/h ≥15, it is less than 1%. The shear com-
ponent of deflection is also presented there, which, 
relative to the component from bending at l/h ≥ 15 
for unidirectional and woven CFRP, respectively, 
does not exceed 15% and 9%, and less than 3% for 

FRP. The ratio of Eb to E for all three materials 
under consideration is above 90%. Analysis of the 
presented data, without taking into account the er-
rors introduced by the accepted hypothesis, sug-
gests that the modernization of the Timoshenko 
equation does not have a noticeable effect on the 
value of maximum deflection during bending. The 
data in works [16, 17] do not agree with the as-
sessment of the distribution of local deformations 
in isotropic [18, 19] and anisotropic [2, 20] mate-
rials. In the latter, it is clearly shown that, despite 
the relatively high values of local deformations, 
they quickly fade and do not have a noticeable ef-
fect on the value of the determined characteristic. 
Therefore, the aim of this work is to assess the ca-
pabilities of the Timoshenko approaches to estab-
lishing the components of deflection during three-
point bending and to develop approaches based on 
the received data to obtain comparable values of 
elastic moduli for any values of l/h. 

TIMOSHENKO APPROACHES 

There are three approaches developed by Ti-
moshenko for assessing shear deformations in the 
three-point bending of isotropic beams. They have 
different theoretical initial bases for creation, but 
practically the same final results. The specimen 
loading scheme used in these approaches [18] is 
shown in Fig. 1. 

 
Fig. 1. Specimen loading scheme for estimating shear deformations 

in bending 

The first approach is obtained from the solu-
tion of a plane problem using integer polynomials, 
where the stress function is represented as an inte-
ger polynomial of the fifth degree [18].  
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An equation is given for calculating the beam 
deflection, taking into account the shear and local 
stresses from concentrated force P: 

𝑦𝑦 =
𝑃𝑃�𝑙𝑙 ℎ� �

3

4𝐸𝐸𝐸𝐸
+ 0.74 3

2
𝑃𝑃𝑃𝑃

4ℎ𝑏𝑏𝑏𝑏
   (3) 

The first part is a standard equation for calcu-
lating beam deflection without taking shear into 
account, and the second is an addition to the de-
flection from shear deformations and local 
stresses. From the second part of Eq. (3) it follows 
that the shear component of the deflection is equal 
to the relative shear angle multiplied by the span 
length, i.e. 

𝑦𝑦𝑠𝑠 = 1.11𝑃𝑃
4𝐺𝐺𝐺𝐺ℎ

𝑙𝑙   (4) 

here the shear stress is: 

𝜏𝜏 = 1.11𝑃𝑃
4𝑏𝑏ℎ

    (5) 

The latter is 2.7 times higher than the former, 
and the value of the interlayer shear modulus of 
steel calculated by one of the methods developed 
on the basis of Timoshenko's approaches occurred 
to be many times lower than its real value. 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝑃𝑃
4𝑏𝑏ℎ

   (6) 

Thus, two factors – a high value of total de-
flection and low values of shear stresses, clearly 
indicate one of the possible reasons preventing 
achievement of the set goal, namely, incorrect de-
termination of the components of deflection dur-
ing bending. This follows from the analysis car-
ried out by the author of the approaches under con-
sideration. In his work [18], it is noted: “The ob-
tained stress distribution completely coincides 
with that given by the elementary theory of bend-
ing”. It is also noted there that the real picture of 
stress distribution has some differences from the 
accepted one. This is due to the fact that local 
stresses are added to the bending stresses at the 
point of applying concentrated force P, which 
quickly fade, and do not have a noticeable effect 
on the entire picture of the stress distribution. Lo-
cal stresses, including normal tangential stresses, 
quickly fade with distance from the point of apply-
ing the force. Moreover, already at a distance 

equal to the height of the beam, as a rule, they can 
be ignored [19]. 

The second approach of Timoshenko is based 
on the use of the differential equation of the curved 
axis of the beam [21]. According to this approach, 
the total deflection of a rectangular beam, under 
three-point bending by force P in the middle of 
span l, is equal to: 

𝑦𝑦 = 𝑃𝑃𝑙𝑙3

48𝐸𝐸𝐸𝐸
�1 + 3.90 ℎ2

𝑙𝑙2
�   (7) 

Here, as in the first approach, the component 
of the deflection from shear is added in the middle 
of the span to the deflection from bending. This 
does not agree with the experimental results, 
where the value of the total deflection with a de-
crease in l/h turns out to be significantly lower 
than with the initial span. Even an increase in P by 
several times does not lead to the equality of these 
deflections. This indicates that the additive is part 
of the total deflection.  

The third approach is described in [19]. It is 
based on establishing the curvature of the deflec-
tion curve taking into account the nature and char-
acter of the stress distribution for the loading 
scheme considered here. It is shown in [19] that 
for steel samples, the obtained dependencies for 
the total deflection in all approaches are com-
pletely identical. Therefore, its further considera-
tion does not seem appropriate. 

The analysis shows that the considered basic 
approaches to assessing the maximum deflection 
and its components during bending have been ex-
tremely poorly studied, and their acceptability for 
determining shear deformations even of isotropic 
materials has not been proven in any way. 

EXPERIMENTAL STUDIES AND THEIR RE-
SULTS 

The experimental study of the maximum de-
flection components in bending tests was first car-
ried out on steel specimens whose characteristics 
have been well studied, and there are proven and 
reliable methods for determining its elastic and 
shear properties. The experiments were carried  
out by means of tension and three-point bending of 
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prismatic beams with a rectangular cross-section. 
The tensile tests were carried out to establish the 
exact values of the shear modulus and elastic mod-
ulus for the purpose of comparing them with the 
values obtained from three-point bending. In this 
case, the shear moduli were determined only for 
an indirect assessment of the correctness of deter-
mining the shear component of the deflection. The 
tensile and bending tests were conducted on an 
MTS machine in accordance with the current 
standards noted above. The deflection was meas-
ured on the lower surface of the beam in its mid-
dle, exactly under the point of application of the 
load. The measurement was performed using a 
calibrated steel plate, at the end of the fastening 
zone of which two foil strain gauges were glued, 
connected to a computer. The deflection was 
measured automatically from the beginning to the 
end of specimen loading. The calculated values of 
the characteristics, calculated according to the first 
approach, using Eq. 3 for different values of the 

l/h ratio, are collected in Table 2. The ys values are 
calculated taking into account the value of the 
shear modulus of steel, obtained by another relia-
ble method [22, 23]. It is equal to 82.170 GPa. The 
modulus of elasticity of steel in bending (l/h = 40) 
was E = 211.659 GPa; in tension E+ = 211.520. 
The dimensions of the sample are b, mm / h,  
mm = 17.0 / 5.0. 

Analysis of the data collected in Table 2 shows 
that the use of Eq. 3 is acceptable for assessing the 
shear component of the deflection of steel sam-
ples. The estimated deflection value, calculated 
without taking into account the shear (the first part 
of Eq. 3), has only a slight (0.20%) excess of its 
experimental value ye at l/h = 40. The shear com-
ponent with a change in two parameters – an in-
crease in P and a decrease in l/h, as can be seen 
from Table 2, increases in relation to its value for 
large spans (see ys / y1

s). In this case, the value of 
the total deflection decreases, and no changes in 
the P – y dependence are observed.  

 

TABLE 2. Characteristics of steel specimens calculated using Eq. 3 and initial data used for their calculation 

l, mm l/h P , КN P / P1 ye, mm y*, mm ys, mm ys  /  y1
s  y , mm    y / ye G, GPa 

200 40 0.300 1.000 1.334 1.3368 0.0024 1.000 1.339 1.004 – 
150 30 0.430 1.433 0.778 0.8080 0.0026 1.074 0.811 1.042 – 
100 20 1.276 4.253 0.782 0.7110 0.0052 2.127 0.716 0.916 6.434 

50 10 3.000 10.000 0.247 0.2090 0.0061 2.502 0.215 0.870 13.137 
Note: P1, y1s are the values for the largest span; y ٭ is the calculated deflection without taking into account the shear. 

 

The values of the characteristics calculated ac-
cording to the second approach (Eq. 7) for steel 
specimens are given in Table 3. All the character-
istics are calculated using the same data that were 
previously used in the first approach. Compared to 

the first, the second approach yields larger values 
of the shear component of the deflection, but the 
calculated values of deflection y٭ turned out to be 
identical to those obtained in the first approach for 
all the values of l/h. 

 

TABLE 3. Characteristics of steel specimens calculated using Eq. 7 and initial data used for their calculation 

l, mm l/h P , KN P / P1 ye, mm y*, mm ys, mm ys/ y1
s y, mm y/ye G, GPa 

200 40 0.300 1.000 1,3340 1.3368 0.0033 1.000 1.3401 1.005 – 
150 30 0.430 1.433 0,7780 0.8080 0.0035 1.071 0.8115 1.043 – 
100 20 1.276 4.253 0,7820 0.7110 0.0069 2.126 0.7180 0.918 8.966 
50 10 3.000 10.000 0,2470 0.2090 0.0082 2.503 0.2172 0.879 22.637 
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The use of the second approach leads to results 
similar to those obtained using the first one. This 
is especially demonstrated by the ratios of deflec-
tions ys / y1

s and y / ye of both approaches. The pre-
sented data show that the calculated shear compo-
nent of the deflection for all the studied ratios l/h 
has a very small value compared to the deflection 
measured under the point of application of the 
load. Thus, at l/h = 40, the component of the de-
flection from shear is only 0.18% of ye, and 2.35% 
of ye at l/h = 10. A decrease in l/h leads to an in-
crease in ys, similar to the data calculated using Eq. 
7 (see Table 3). The change in ys is influenced not 
only by parameter l/h, but also by applied force P. 
The calculated values of the shear modulus are 
also greatly underestimated, as are those presented 
in Tables 2 and 3.  

It should be noted that the approaches under 
consideration are not suitable for assessing  
the shear modulus of isotropic materials, since at  
l/h ≥ 30 the given Eqs. 3, and7 do not allow its 
values to be calculated due to the excess of the cal-
culated value of the total deflection y compared  
to ye. At l/h ≤ 20 the determined values of the shear 
modulus turn out to be very underestimated  
(see Tables 2, 3) compared to the real ones  
(G = 82.170 GPa).  

The analysis of the studies shows that all the 
approaches considered were developed to evaluate 
the effect of shear deformation on deflection only 
for isotropic materials whose shear modulus is in 
exact and excellent agreement with the modulus of 
elasticity. For anisotropic materials, including 
composite materials, no such consistency has been 
yet established. Therefore, in this case, the appli-
cation of these approaches to the noted materials 
is not possible. One of the main shortcomings of 
the considered approaches – the summation of 
shear and transverse bending deflections – should 
be mentioned again. 

The determined values of the modulus of elas-
ticity, even for isotropic materials, are signifi-
cantly underestimated [10, 24]. This is also due to 
the fact that the determined value of the modulus 
of elasticity in three-point bending is identified by 
determining the maximum deflection based on 
classical Eq. 1. This excludes from consideration 
the fact that the modulus of elasticity is a material 

characteristic and, unlike y, does not depend on 
parameter l/h or other external factors that do not 
disturb its integrity and structure. Its exact value, 
even for isotropic materials, is determined from 
tensile experiments [18]. 

To take into account the influence of shear de-
formations on deflection in three-point bending, 
while keeping the value of the elastic modulus of 
the material constant, we consider the depend-
ences for determining the deflection and the angle 
of rotation in any cross-section of the specimen 
[10]: 

𝑦𝑦𝑥𝑥 = 𝑃𝑃𝑥𝑥3

12𝐸𝐸𝐸𝐸
− 𝑃𝑃𝑙𝑙2

16𝐸𝐸𝐸𝐸
𝑥𝑥   (8) 

Θ𝑥𝑥 = 𝑃𝑃𝑥𝑥2

4𝐸𝐸𝐸𝐸
− 𝑃𝑃𝑙𝑙2

16𝐸𝐸𝐸𝐸
   (9) 

Here x is the distance from the left support of 
the beam; Θx is the angle of rotation of the cross-
section at distance x from the left support. The 
maximum value of deflection occurs at x = l/2, i.e. 
under the point of applying force P, hence, in this 
case, 

𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑃𝑃𝑃𝑃�𝑙𝑙 ℎ� �

2

4𝐹𝐹𝐹𝐹
  (10) 

Here F is the cross-sectional area of the speci-
men. The maximum angle of rotation occurs at the 
support, i.e. at x = 0. Hence 

Θ =
3𝑃𝑃�𝑙𝑙 ℎ� �

2

4𝐸𝐸𝐸𝐸
   (11) 

and at x = l/2, i.e. directly under the point of 
applying force P, Θ = 0. Hereinafter Θ = Θmax is 
the maximum angle of rotation of the specimen 
cross-section. From Eqs. 10 and 11 it follows that 

𝑦𝑦 = 𝑦𝑦Θ = 1
3
𝑙𝑙Θ   (12) 

or 

Θ = 3𝑦𝑦𝑒𝑒

𝑙𝑙
   (13) 

Here ye is the deflection measured at l/h = 40; 
yΘ is the linear displacement caused by the rotation 
angles of the specimen sections. 

Availability of the obtained exact values of an-
gular and linear displacements at two characteris-
tic points makes it possible to visualise more 
clearly the whole process of their change in the 
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process of loading. For this purpose, angular dis-
placements are transformed into linear displace-
ments according to dependence (12). Their values 
are plotted at characteristic points – at one of the 
supports and under the point of applying force P. 
Linear displacements also take place at these 
points. Taking into account the linear character of 
the P – y dependence for all the selected values of 
l/h, as well as the linear character of change of an-
gular displacements (angles of rotation of the 
specimen sections) on the sections from the sup-
ports to the point of force application [19], the two 
yΘ points and the corresponding two ymax points 
can be connected by a straight line. The scheme of 
displacement variation is shown in Fig. 2. It fol-
lows from the above that the angular and linear 
displacements are interrelated. The maximum de-
flection under the point of force application does 
not contain a shear component. Therefore, the use 
of the Timoshenko approaches, taking into ac-
count the ‘build-up’ of the maximum deflection, is 
not confirmed either analytically or experimen-
tally. The considered approaches enable reliable 
values to be determined of the shear component in 
bending of isotropic materials included in the total 
deflection, but not the addition to the deflection. 
The latter is their drawback. The latter introduces 
noticeable changes in the methods of determining 
their moduli of elasticity as well. This is especially 
true for monotropic CMs.  

 
Fig. 2. Diagram of displacement variation in beam section under 

consideration 

The estimation of their moduli of elasticity in 
the direction of reinforcement by the existing 
methods developed for isotropic materials gives 
values that are overestimated by about two times. 
This is confirmed, for example, by [25], where it 
is shown that the experimentally determined bend-
ing stiffness of a composite beam is, as a rule, less 
than that calculated from the value of the elastic 
modulus determined in tension. Therefore, the in-
terrelation of the individual bending and tensile 
data can be taken into account to exclude such 
facts. This relationship is used in the presented ap-
proach to determine the modulus of elasticity in 
bending. The modulus of elasticity in this case can 
also be determined on the basis of angular dis-
placement data converted to linear displacements 
according to Eq. 12, as follows: 

𝐸𝐸 =
𝑃𝑃�𝑙𝑙 ℎ� �

3

4𝑏𝑏𝑦𝑦Θ
   (14) 

Experimental data on the estimation of the 
modulus of elasticity of steel by linear and angular 
displacements are contained in Table 4.  
 

TABLE 4. Values of elastic modulus of steel under three-point bending with different l/h, calculated using Eq. 14 and initial data 
used in the calculation 

l/h Р, КN Px, KN Θ, rad yΘ, mm E, GPa E/E+ 

40 0.300 0.300 0.0200 1.333 211.817 1.001 
30 0.430 0.711 0.0161 0.805 212.093 1.003 
20 1.276 2.400 0.0213 0.710 211.433 1.000 
10 3.000 19.200 0.0125 0.208 212.104 1.003 

Note: h = 5.0 mm; b = 17.0 mm; E+ =211.520 GPa; E = 211.659 GPa; ye = 1.334 mm. 
 

When calculating linear displacements, the 
following condition was used: Р(l/h)3 = const. = 
0.300 КN×403 = 19200 КN. It should be noted 
that the measured deflection is the same for all l/h. 
The modulus of elasticity, determined by ye, is 

also the same for all l/h. The obtained values are 
given below the table. The table shows the results 
of the angular displacement calculation. The val-
ues of Θ were calculated by Eq. 11, yΘ by Eq. 12, 
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and the values of E given in the table were deter-
mined by Eq. 14.  

As can be seen from Table 4, the values of the 
moduli of elasticity obtained by angular and linear 
displacements, for all ratios of l/h are very close 
and agree well with the modulus of elasticity in 
tension, that is, they represent the real values of 
the modulus of elasticity of the material. The va-
lidity of the obtained values for angular displace-
ments is well confirmed by equality yΘ = y at  

l/h = 40 and the total value of y = 1.333 calculated 
by Eq.14. Similar data were obtained for compo-
site materials.  

The experimental and calculated data of the 
modulus of elasticity in the bending of orthogonal-
reinforced (1:1) fiberglass made on the basis of ve-
neer are given in Table 5. It shows that at all l/h 
ratios the values of elastic moduli are in good 
agreement.  

 

TABLE 5. Values of elastic modulus of 1:1 fiberglass under three-point bending with different l/h, calculated using Eq. 14  
and initial data used in the calculation 

l/h Р, КN Θ, rad yΘ, mm E, GPa E/E+ 
19.61 0.102 0.0098 0.655 22.920 1.002 
9.804 0.458 0.0110 0.367 22.955 1.000 
4.902 0.856 0.0052 0.086 22.939 0.999 

Note: h = 10.2 mm; b = 12.8 mm; Е+=22.941 GPa; E = 22.500 GPa; ye =0.656 mm. 
 

The experimental and calculated bending elas-
tic modulus data of boron plastic (1:0) are shown 
in Table 6. These data show good agreement be-

tween the elastic modulus values obtained at dif-
ferent P and l/h. Thus, it is possible to obtain stable 
and reliable values of the modulus of elasticity at 
values l/h < 40. 

TABLE 6. Values of elastic modulus of boron plastic 1:0 under three-point bending with different l/h, calculated using Eq. 14  
and initial data used in the calculation 

l/h  Р, KN Θ, rad yΘ, mm E, GPa E/E+ 

50 0.072 0.0220 0.731 150.817 1.011 
30 0.206 0.0230 0.452 150.840 1.011 
25 0.308 0.0230 0.391 150.742 1.010 
15 0.274 0.0075 0.075 150.808 1.011 

Note: h = 2. Mm; b = 20.4 mm; Е+=149.176 GPa; ye = 0.731 mm. 

 
The proposed approach makes it possible to 

determine the values of elastic moduli on speci-
mens with different l/h ratios simply and effi-
ciently enough for structural materials of various 
types, based on the determined deflection value. 
The measured deflection under the point of force 
application P can serve as a test for the reliability 
of the determined characteristic since the calcu-
lated value of the maximum deflection obtained by 
Eq. 12 excludes the possible influence of other 
factors on its value. 

The problem is quite important in many areas 
of engineering (including coatings of various 

kinds, e.g. [26]). Thus, such analysis should be de-
veloped further in future studies on this subject.  

CONCLUSIONS 

1. A simple approach for determining the elastic 
moduli of structural materials has been pro-
posed, the basis of which is the maximum val-
ues of deflections and angles of rotation of the 
cross-sections of the specimen under three-
point bending.  

2. The relationship between the maximum val-
ues of deflections and rotation angles of the 
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specimen sections, which are mutually related 
to each other during loading and inseparable, 
has been established.  

3. It has been established that the maximum de-
flection under the point of load application 
does not contain a shear component of defor-
mations, which excludes the possibility of us-
ing the Timoshenko approaches with the pres-
ence of a shear additive for the development 
of methods for determining the elasticity and 
shear moduli of structural materials.  
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