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Stiffness characteristics are often decisive in the choice of material for structural parts. At the same time, the
process of their determination for anisotropic materials does not fully satisfy the requirements in terms of reliability
and reproducibility. This work is devoted to the development of an approach for determining the moduli of elasticity.
An analysis of the Timoshenko approaches developed to estimate the shear component of deflection in transverse bend-
ing is presented. The drawbacks preventing their use as a basis for modern methods of determining the elastic compo-
nents of structural materials are noted. An approach for determining the elastic moduli is proposed, the basis of which
are the maximum values of deflections and angles of rotation of the cross-sections of a specimen under three-point
transverse bending. The relationship between angular and linear displacements under the considered type of loading
is established, which allows stable and reliable values of elasticity moduli to be obtained from the data of angular
displacements. The acceptability of the proposed approach for determining the elastic moduli of both isotropic mate-

rials and composites is shown.
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INTRODUCTION

The development of new composite materials
and the study of their properties contribute to the
growth of unique features of these materials com-
pared to traditional ones. This factor leads to the
rapid expansion of their use in various branches of
science and technology. They have become espe-
cially attractive in aerospace and shipbuilding in-
dustries, which impose high requirements to the
reliability assessment of structural elements made
of them. This is primarily determined by the accu-
racy and reliability of determining certain proper-
ties of these materials. Thus, for structural parts
made of composite materials, the most important
of these properties are the elastic moduli. They are

among the main characteristics necessary to assess
the possibility of using structural materials in var-
ious industries. Therefore, the methods of deter-
mining the noted characteristics should not cause
any doubt in the reliability, stability or reproduci-
bility of their values. However, the real situation
in this matter contradicts this condition.

Firstly, the developed analytical methods
based on the elastic properties of the reinforcing
fibres, their arrangement and the elastic properties
of the matrix give a wide range of elastic modulus
values. The Voigt method shows the highest val-
ues and the Reiss method the lowest. Detailed
analyses of these methods are presented in [1-4].
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Some of them are rather cumbersome and incon-
venient for practical implementation.

Therefore, their experimental evaluation does
not yet meet the requirements. Despite the fact that
many years have passed since the advent of com-
posite materials, to date the main most reliable ex-
perimental method for determining the moduli of
elasticity is the tensile test method for isotropic
materials. The method is standardised [5-7]. These
standards are used for all types of composite ma-
terials, regardless of their reinforcement structure,
without sufficient justification or evidence of their
acceptability. The main disadvantages of the noted
standards are the general approach to the determi-
nation of elastic moduli of both isotropic and com-
posite materials, as well as the high requirements
for their manufacture and relatively labour-inten-
sive process of testing. The process of bending
specimen testing is therefore receiving increasing
attention.

STATE OF THE ART AND PROBLEM STATE-
MENT

The issues related to determining the elasticity
moduli of composite materials under bending are
considered in a number of works. The main atten-
tion in them is paid to evaluation of the influence
of various factors on the accuracy of deflection es-

timation and its components, as well as to the es-
timation of real values of composite material elas-
tic moduli [8-11]. Therefore, some of the stand-
ards for the determination of elastic moduli from
three-point bending experiments have been devel-
oped with these factors in mind, e.g. [12-14]. The
main requirement for their use is strict control over
the accuracy of specimen manufacture, the estab-
lished value of the ratio of specimen length to
specimen thickness, //h, and consideration of the
established values of relative strains. The deter-
mined value of the apparent modulus of elasticity
in bending, E», depends significantly on the ratio
I/h, especially when I/h < 25 [15]. Nevertheless,
the relationship between £, and the real modulus
of elasticity of the material, £, at different values
of I/h has not yet been established by anyone. The
possibility of determining the real value of E
(based on test data) at small values of /4 is cur-
rently not available at all. The values of the moduli
of elasticity for two types of structural materials,
calculated using the usual equation [9]:

_ ()

E
b 4by

(1

are presented in Table 1. Hereinafter: P is the force
applied to the specimen in the centre of the span;
b is the width of the specimen, y is the deflection
of the specimen in the middle of the span.

TABLE 1. Dependence of modulus of elasticity in three-point bending of structural materials on change in I//h and P

Steel Boron plastic
I/h P,KN | y*, mm | E», GPa | Ey/E* | I/h P, KN | y*,mm | Ey, GPa | Ey/ E*
40 0.300 | 1.334 | 211.659 | 1.001 50 0.072 | 0.731 150.799 1.010
30 0.430 | 0.778 | 219.304 | 1.036 30 0.206 | 0.550 | 123.860 0.830
20 1.276 | 0.782 | 191.847 | 0.907 25 0.308 | 0.519 | 114.447 0.767
10 3.000 | 0.247 | 178.503 | 0.844 15 0.274 | 0.186 60.890 0.408

Note: ye is the deflection measured experimentally on the bottom surface of the specimen under the point of load application; tensile
modulus of elasticity for steel E+ = 211.520 GPa; for boron plastic E+ = 149.176 GPa.

The y values were determined on the linear
part of the P-y dependence, as it is stipulated by
the current standards. The data given in the table
show that bending tests of both isotropic and com-
posite materials allow reliable values of the mod-
ulus of elasticity to be obtained only at a set value
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1/h, not less than 40. Reducing this value leads to
a difference between the determined elastic mod-
ulus values and those obtained from tensile tests.
This makes this method inefficient because of the
impossibility to use the results obtained at I/h <40.
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It is obvious that the modernization of stand-
ards and tightening of requirements for sample
preparation have not brought about any significant
progress in achieving the set goal. As before, as-
sessment of the deflection shift is carried out using
the Timoshenko equation:

I

Eb Er G

It is currently employed in many works as
a basis for studying the components of maximum
deflection and its shear component. For this pur-
pose, a term is added to this dependence, taking
into account the necessary factor. An example can
be found in works [16, 17]. In them, the same term
is added to the main dependence, taking into ac-
count local deformation effects. Let us consider
the role of the additional term in solving the prob-
lem using the example of [16]. The hypothesis
adopted in this case is clearly shown in the figure
in [16]. Its essence is that when loading a sample
for three-point bending, the maximum deflection
under the point of applying the load consists of in-
dividual components (from bending, shear, and lo-
cal deformations). The latter consist of compo-
nents from supports and from the applied load.
These two components have constant values that
are distributed throughout the span. The compo-
nents of deflection from bending and from shear
have the same curve character with a minimum
value at the supports and a maximum under the
point of application of the load. The numerical val-
ues of these deflection components are not pre-
sented in the work. The ratios of local deformation
effects to deflection from bending, depending on
parameter /A, are presented in the figure for three
types of CMs. These data show that the maximum
value of the local component with respect to the
bending deflection component for unidirectional
and woven CFRP, at //h >15, does not exceed
2.5% and 1.0%, respectively, while for woven
FRP, at I/h >15, it is less than 1%. The shear com-
ponent of deflection is also presented there, which,
relative to the component from bending at I/h > 15
for unidirectional and woven CFRP, respectively,
does not exceed 15% and 9%, and less than 3% for

FRP. The ratio of E; to E for all three materials
under consideration is above 90%. Analysis of the
presented data, without taking into account the er-
rors introduced by the accepted hypothesis, sug-
gests that the modernization of the Timoshenko
equation does not have a noticeable effect on the
value of maximum deflection during bending. The
data in works [16, 17] do not agree with the as-
sessment of the distribution of local deformations
in isotropic [18, 19] and anisotropic [2, 20] mate-
rials. In the latter, it is clearly shown that, despite
the relatively high values of local deformations,
they quickly fade and do not have a noticeable ef-
fect on the value of the determined characteristic.
Therefore, the aim of this work is to assess the ca-
pabilities of the Timoshenko approaches to estab-
lishing the components of deflection during three-
point bending and to develop approaches based on
the received data to obtain comparable values of
elastic moduli for any values of /4.

TIMOSHENKO APPROACHES

There are three approaches developed by Ti-
moshenko for assessing shear deformations in the
three-point bending of isotropic beams. They have
different theoretical initial bases for creation, but
practically the same final results. The specimen
loading scheme used in these approaches [18] is
shown in Fig. 1.

= T

Fig. 1. Specimen loading scheme for estimating shear deformations
in bending

The first approach is obtained from the solu-
tion of a plane problem using integer polynomials,
where the stress function is represented as an inte-
ger polynomial of the fifth degree [18].
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An equation is given for calculating the beam
deflection, taking into account the shear and local
stresses from concentrated force P:

_ )’
4Eb

3 Pl

+0.74>— 3)

The first part is a standard equation for calcu-
lating beam deflection without taking shear into
account, and the second is an addition to the de-
flection from shear deformations and local
stresses. From the second part of Eq. (3) it follows
that the shear component of the deflection is equal
to the relative shear angle multiplied by the span
length, i.e.

s _ 111P
" 4Gbh

L “4)

here the shear stress is:

1.11P
U= "n ®)

The latter is 2.7 times higher than the former,

and the value of the interlayer shear modulus of
steel calculated by one of the methods developed
on the basis of Timoshenko's approaches occurred
to be many times lower than its real value.

Tmax = % (6)

Thus, two factors — a high value of total de-
flection and low values of shear stresses, clearly
indicate one of the possible reasons preventing
achievement of the set goal, namely, incorrect de-
termination of the components of deflection dur-
ing bending. This follows from the analysis car-
ried out by the author of the approaches under con-
sideration. In his work [18], it is noted: “The ob-
tained stress distribution completely coincides
with that given by the elementary theory of bend-
ing”. It is also noted there that the real picture of
stress distribution has some differences from the
accepted one. This is due to the fact that local
stresses are added to the bending stresses at the
point of applying concentrated force P, which
quickly fade, and do not have a noticeable effect
on the entire picture of the stress distribution. Lo-
cal stresses, including normal tangential stresses,
quickly fade with distance from the point of apply-
ing the force. Moreover, already at a distance
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equal to the height of the beam, as a rule, they can
be ignored [19].

The second approach of Timoshenko is based
on the use of the differential equation of the curved
axis of the beam [21]. According to this approach,
the total deflection of a rectangular beam, under
three-point bending by force P in the middle of
span /, is equal to:

_ P® h?
y = E(l +3.90%) 7)

Here, as in the first approach, the component
of the deflection from shear is added in the middle
of the span to the deflection from bending. This
does not agree with the experimental results,
where the value of the total deflection with a de-
crease in //h turns out to be significantly lower
than with the initial span. Even an increase in P by
several times does not lead to the equality of these
deflections. This indicates that the additive is part
of the total deflection.

The third approach is described in [19]. It is
based on establishing the curvature of the deflec-
tion curve taking into account the nature and char-
acter of the stress distribution for the loading
scheme considered here. It is shown in [19] that
for steel samples, the obtained dependencies for
the total deflection in all approaches are com-
pletely identical. Therefore, its further considera-
tion does not seem appropriate.

The analysis shows that the considered basic
approaches to assessing the maximum deflection
and its components during bending have been ex-
tremely poorly studied, and their acceptability for
determining shear deformations even of isotropic
materials has not been proven in any way.

EXPERIMENTAL STUDIES AND THEIR RE-
SULTS

The experimental study of the maximum de-
flection components in bending tests was first car-
ried out on steel specimens whose characteristics
have been well studied, and there are proven and
reliable methods for determining its elastic and
shear properties. The experiments were carried
out by means of tension and three-point bending of
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prismatic beams with a rectangular cross-section.
The tensile tests were carried out to establish the
exact values of the shear modulus and elastic mod-
ulus for the purpose of comparing them with the
values obtained from three-point bending. In this
case, the shear moduli were determined only for
an indirect assessment of the correctness of deter-
mining the shear component of the deflection. The
tensile and bending tests were conducted on an
MTS machine in accordance with the current
standards noted above. The deflection was meas-
ured on the lower surface of the beam in its mid-
dle, exactly under the point of application of the
load. The measurement was performed using a
calibrated steel plate, at the end of the fastening
zone of which two foil strain gauges were glued,
connected to a computer. The deflection was
measured automatically from the beginning to the
end of specimen loading. The calculated values of
the characteristics, calculated according to the first
approach, using Eq. 3 for different values of the

I/h ratio, are collected in Table 2. The )’ values are
calculated taking into account the value of the
shear modulus of steel, obtained by another relia-
ble method [22, 23]. It is equal to 82.170 GPa. The
modulus of elasticity of steel in bending (/4 = 40)
was E = 211.659 GPa; in tension £ = 211.520.
The dimensions of the sample are b, mm / h,
mm=17.0/5.0.

Analysis of the data collected in Table 2 shows
that the use of Eq. 3 is acceptable for assessing the
shear component of the deflection of steel sam-
ples. The estimated deflection value, calculated
without taking into account the shear (the first part
of Eq. 3), has only a slight (0.20%) excess of its
experimental value y© at I/ = 40. The shear com-
ponent with a change in two parameters — an in-
crease in P and a decrease in /A, as can be seen
from Table 2, increases in relation to its value for
large spans (see )’ / y;*). In this case, the value of
the total deflection decreases, and no changes in
the P — y dependence are observed.

TABLE 2. Characteristics of steel specimens calculated using Eq. 3 and initial data used for their calculation

Lmm |/h | P,KN | P/P; |y,mm |y mm |y, mm|)y /y*|y,mm| y/y°| G, GPa
200 40 | 0.300 1.000 | 1.334 1.3368 | 0.0024 | 1.000 | 1.339 1.004 —
150 30 | 0.430 1.433 | 0.778 0.8080 | 0.0026 | 1.074 | 0.811 1.042 —
100 20 | 1.276 | 4.253 | 0.782 | 0.7110 | 0.0052 | 2.127 | 0.716 0916 | 6.434
50 10 | 3.000 | 10.000 | 0.247 | 0.2090 | 0.0061 | 2.502 | 0.215 0.870 | 13.137

Note: P1, y1s are the values for the largest span; y* is the calculated deflection without taking into account the shear.

The values of the characteristics calculated ac-
cording to the second approach (Eq. 7) for steel
specimens are given in Table 3. All the character-
istics are calculated using the same data that were
previously used in the first approach. Compared to

the first, the second approach yields larger values
of the shear component of the deflection, but the
calculated values of deflection y~ turned out to be
identical to those obtained in the first approach for
all the values of //A.

TABLE 3. Characteristics of steel specimens calculated using Eq. 7 and initial data used for their calculation

L,Lmm | /h | P,KN P/P; | »mm | y,mm | ), mm vyl y,mm | yh* | G,GPa
200 | 40 0.300 1.000 1,3340 1.3368 0.0033 1.000 1.3401 | 1.005 -
150 30 0.430 1.433 0,7780 0.8080 0.0035 1.071 0.8115 | 1.043 —
100 | 20 1.276 4.253 0,7820 0.7110 0.0069 2.126 0.7180 | 0.918 8.966
50 10 3.000 10.000 0,2470 0.2090 0.0082 2.503 0.2172 | 0.879 | 22.637
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The use of the second approach leads to results
similar to those obtained using the first one. This
is especially demonstrated by the ratios of deflec-
tions )’ / y;* and y /y° of both approaches. The pre-
sented data show that the calculated shear compo-
nent of the deflection for all the studied ratios /A
has a very small value compared to the deflection
measured under the point of application of the
load. Thus, at //h = 40, the component of the de-
flection from shear is only 0.18% of )°, and 2.35%
of y© at I/h = 10. A decrease in //h leads to an in-
crease in ), similar to the data calculated using Eq.
7 (see Table 3). The change in )’ is influenced not
only by parameter /4, but also by applied force P.
The calculated values of the shear modulus are
also greatly underestimated, as are those presented
in Tables 2 and 3.

It should be noted that the approaches under
consideration are not suitable for assessing
the shear modulus of isotropic materials, since at
I/h > 30 the given Egs. 3, and7 do not allow its
values to be calculated due to the excess of the cal-
culated value of the total deflection y compared
to . At I/h <20 the determined values of the shear
modulus turn out to be very underestimated
(see Tables 2, 3) compared to the real ones
(G =82.170 GPa).

The analysis of the studies shows that all the
approaches considered were developed to evaluate
the effect of shear deformation on deflection only
for isotropic materials whose shear modulus is in
exact and excellent agreement with the modulus of
elasticity. For anisotropic materials, including
composite materials, no such consistency has been
yet established. Therefore, in this case, the appli-
cation of these approaches to the noted materials
is not possible. One of the main shortcomings of
the considered approaches — the summation of
shear and transverse bending deflections — should
be mentioned again.

The determined values of the modulus of elas-
ticity, even for isotropic materials, are signifi-
cantly underestimated [10, 24]. This is also due to
the fact that the determined value of the modulus
of elasticity in three-point bending is identified by
determining the maximum deflection based on
classical Eq. 1. This excludes from consideration
the fact that the modulus of elasticity is a material
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characteristic and, unlike y, does not depend on
parameter [/ or other external factors that do not
disturb its integrity and structure. Its exact value,
even for isotropic materials, is determined from
tensile experiments [18].

To take into account the influence of shear de-
formations on deflection in three-point bending,
while keeping the value of the elastic modulus of
the material constant, we consider the depend-
ences for determining the deflection and the angle
of rotation in any cross-section of the specimen
[10]:

Px3 Pl?

Yx = 12E] 16E]x (®)
px*  Pl?

O, = 4E]  16EJ ©)

Here x is the distance from the left support of
the beam; O, is the angle of rotation of the cross-
section at distance x from the left support. The
maximum value of deflection occurs at x =//2, i.e.
under the point of applying force P, hence, in this
case,

_pily)

y_ymax - AFE

(10)

Here F is the cross-sectional area of the speci-
men. The maximum angle of rotation occurs at the
support, i.e. at x = 0. Hence

_ ()’
T 4EF (D

and at x = /2, i.e. directly under the point of
applying force P, ® = 0. Hereinafter ® = @,y is
the maximum angle of rotation of the specimen

cross-section. From Egs. 10 and 11 it follows that

1
y=Yyeo =310 (12)
or
0= (13)

Here y* is the deflection measured at //h = 40;
ve is the linear displacement caused by the rotation
angles of the specimen sections.

Availability of the obtained exact values of an-
gular and linear displacements at two characteris-
tic points makes it possible to visualise more
clearly the whole process of their change in the
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process of loading. For this purpose, angular dis-
placements are transformed into linear displace-
ments according to dependence (12). Their values
are plotted at characteristic points — at one of the
supports and under the point of applying force P.
Linear displacements also take place at these
points. Taking into account the linear character of
the P — y dependence for all the selected values of
I/h, as well as the linear character of change of an-
gular displacements (angles of rotation of the
specimen sections) on the sections from the sup-
ports to the point of force application [19], the two
ye points and the corresponding two Vma points
can be connected by a straight line. The scheme of
displacement variation is shown in Fig. 2. It fol-
lows from the above that the angular and linear
displacements are interrelated. The maximum de-
flection under the point of force application does
not contain a shear component. Therefore, the use
of the Timoshenko approaches, taking into ac-
count the ‘build-up’ of the maximum deflection, is
not confirmed either analytically or experimen-
tally. The considered approaches enable reliable
values to be determined of the shear component in
bending of isotropic materials included in the total
deflection, but not the addition to the deflection.
The latter is their drawback. The latter introduces
noticeable changes in the methods of determining
their moduli of elasticity as well. This is especially
true for monotropic CMs.

I 0 i
¥eman,
. }

A

Fig. 2. Diagram of displacement variation in beam section under
consideration

The estimation of their moduli of elasticity in
the direction of reinforcement by the existing
methods developed for isotropic materials gives
values that are overestimated by about two times.
This is confirmed, for example, by [25], where it
is shown that the experimentally determined bend-
ing stiffness of a composite beam is, as a rule, less
than that calculated from the value of the elastic
modulus determined in tension. Therefore, the in-
terrelation of the individual bending and tensile
data can be taken into account to exclude such
facts. This relationship is used in the presented ap-
proach to determine the modulus of elasticity in
bending. The modulus of elasticity in this case can
also be determined on the basis of angular dis-
placement data converted to linear displacements
according to Eq. 12, as follows:

VAN

E= pres (14)

Experimental data on the estimation of the
modulus of elasticity of steel by linear and angular
displacements are contained in Table 4.

TABLE 4. Values of elastic modulus of steel under three-point bending with different I/h, calculated using Eq. 14 and initial data
used in the calculation

I/h P, KN P, KN 0, rad Yo, mm E, GPa E/E*
40 0.300 0.300 0.0200 1.333 211.817 1.001
30 0.430 0.711 0.0161 0.805 212.093 1.003
20 1.276 2.400 0.0213 0.710 211.433 1.000
10 3.000 19.200 0.0125 0.208 212.104 1.003

Note: h =5.0 mm; b=17.0 mm; E+=211.520 GPa; E =211.659 GPa; ye = 1.334 mm.

When calculating linear displacements, the
following condition was used: P(I/h)3 = const. =
0.300 KNx403 = 19200 KN. It should be noted
that the measured deflection is the same for all I/h.
The modulus of elasticity, determined by ye, is

also the same for all I/h. The obtained values are
given below the table. The table shows the results
of the angular displacement calculation. The val-
ues of ® were calculated by Eq. 11, y® by Eq. 12,

Composites Theory and Practice 25:3 (2025) All rights reserved
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and the values of E given in the table were deter-
mined by Eq. 14.

As can be seen from Table 4, the values of the
moduli of elasticity obtained by angular and linear
displacements, for all ratios of I/h are very close
and agree well with the modulus of elasticity in
tension, that is, they represent the real values of
the modulus of elasticity of the material. The va-
lidity of the obtained values for angular displace-
ments is well confirmed by equality y® = y at

1/h = 40 and the total value of y = 1.333 calculated
by Eq.14. Similar data were obtained for compo-
site materials.

The experimental and calculated data of the
modulus of elasticity in the bending of orthogonal-
reinforced (1:1) fiberglass made on the basis of ve-
neer are given in Table 5. It shows that at all I/h
ratios the values of elastic moduli are in good
agreement.

TABLE 5. Values of elastic modulus of 1:1 fiberglass under three-point bending with different I/h, calculated using Eq. 14
and initial data used in the calculation

I/h P, KN 0, rad Yo, Mm E, GPa E/E*
19.61 0.102 0.0098 0.655 22.920 1.002
9.804 0.458 0.0110 0.367 22.955 1.000
4.902 0.856 0.0052 0.086 22.939 0.999

Note: h=10.2 mm; b= 12.8 mm; E+=22.941 GPa; E = 22.500 GPa; ye =0.656 mm.

The experimental and calculated bending elas-
tic modulus data of boron plastic (1:0) are shown
in Table 6. These data show good agreement be-

tween the elastic modulus values obtained at dif-
ferent P and I/h. Thus, it is possible to obtain stable
and reliable values of the modulus of elasticity at
values 1/h < 40.

TABLE 6. Values of elastic modulus of boron plastic 1:0 under three-point bending with different I/h, calculated using Eq. 14
and initial data used in the calculation

I/h P, KN 0, rad Yo, mm E, GPa E/E*
50 0.072 0.0220 0.731 150.817 1.011
30 0.206 0.0230 0.452 150.840 1.011
25 0.308 0.0230 0.391 150.742 1.010
15 0.274 0.0075 0.075 150.808 1.011

Note: h=2. Mm; b =20.4 mm; E+=149.176 GPa; ye = 0.731 mm.

The proposed approach makes it possible to
determine the values of elastic moduli on speci-
mens with different /4 ratios simply and effi-
ciently enough for structural materials of various
types, based on the determined deflection value.
The measured deflection under the point of force
application P can serve as a test for the reliability
of the determined characteristic since the calcu-
lated value of the maximum deflection obtained by
Eq. 12 excludes the possible influence of other
factors on its value.

The problem is quite important in many areas
of engineering (including coatings of various
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kinds, e.g. [26]). Thus, such analysis should be de-
veloped further in future studies on this subject.

CONCLUSIONS

1. A simple approach for determining the elastic
moduli of structural materials has been pro-
posed, the basis of which is the maximum val-
ues of deflections and angles of rotation of the
cross-sections of the specimen under three-
point bending.

2. The relationship between the maximum val-
ues of deflections and rotation angles of the



A new approach to determining the elastic modulus of structural materials

225

specimen sections, which are mutually related
to each other during loading and inseparable,
has been established.

3. It has been established that the maximum de-
flection under the point of load application
does not contain a shear component of defor-
mations, which excludes the possibility of us-
ing the Timoshenko approaches with the pres-
ence of a shear additive for the development
of methods for determining the elasticity and
shear moduli of structural materials.
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